Hypersemigroups Constructed on Especially Partially Ordered Sets

JOSEF ZAPLETAL

Department of Mathematics, Faculty of Electrical Engineering and Communication
University of Technology Brno, Technická 8,
616 00 Brno, Czech Republic,
e-mail: zapletal@feec.vutbr.cz

Abstract: This paper links up the papers [3], [6] and [16]. It was proved that the hyperoperation \circ introduced on partially-ordered sets in [16] is not associative for arbitrary underlying set and its ordering in full generality (see remark 7). At first the particular subsets with special orderings are defined and the operation \circ modified. It is proved that the modified hyperoperation \circ on such ordered subsets is associative. Finally a composed underlying set of hypergroupoid for which the multioperation is associative is constructed.

Key words: Binary hyperoperation, hypergroupoid, convex subset, meet and join-irreducible elements, whole, semiwhole and cramped complex, bunch.

1 Introduction

1.1 Definition A hypergroupoid (or a multigroupoid) is a pair (M, \circ) where M is a nonempty set and $\circ : M \times M \to P^*(M)$ is a binary hyperoperation called also a multioperation. $(P^*(M)$ is the system of all nonempty subsets of M).

A semihypergroup is an associative hypergroupoid, i.e. hypergroupoid satisfying the equality $(a \circ b) \circ c = a \circ (b \circ c)$ for every triad $a, b, c \in M$.

1.2 Introduction We denote by M a partially ordered set M with the ordering \leq, with the greatest element I and with the least element O which will be inscribed in the next part of this article with $M = (M, \leq, I, O)$.

1.3 Definition We introduce for every element $u \in M$ a subset $U \subseteq M$ as follows: $U = \{u_i \mid u_i \geq u\}$ and we define on $M = (M, \leq, I)$ for arbitrary $x, y, z \in M$ the modified binary hyperoperation \circ as follows:

$x \circ y = x \circ y = \{\min(X \cap Y)\}$. If $x \in y \circ z$ we put $x \circ (y \circ z) = (x \circ y) \circ z = y \circ z$

We inscribe then the set M with such defined binary operation with $M = (M, \leq, \circ, I)$.

1.4 Definition - Remark We introduce the following very important concept. A subset Di of $M = (M, \leq, \circ, I)$ is called dual ideal of M if Di satisfies the following condition:

For $x, y \in Di$ the relation $x \circ y \subseteq Di$ holds.
The subset U defined in 1.3 is the dual ideal of the element $u \in \mathcal{M} = (M \leq, \diamond, I)$.

1.5 Remark We recall the basic notions: Let M be a finite partly ordered set. The hyperoperation of multiplication \diamond on $(\mathcal{M} = (M \leq, \diamond, I))$ is idempotent and commutative. Every upper-ideal of $\mathcal{M} = (M, \leq, \diamond, I)$ is identical with the dual-ideal of commutative hypergroupoid.

1.6 Remark The binary hyperoperation \diamond defined on partly ordered sets is not associative for arbitrary orderind of the carrier set. It is obvious from the following example.

![Figure 1](image)

We show in this example that the hyperoperation \diamond given on ordered set on Figure 1 is not associative. We prove that $(x \diamond y) \diamond z \neq x \diamond (y \diamond z)$. We denote $x \diamond y$ as W. From the definition of the hyperoperation \diamond the set $W = \{w_1, w_2, w_3\}$.

$W \diamond z = \{w_1 \diamond z\} \cup \{w_2 \diamond z\} \cup \{w_1 \diamond z\} = \{a\} \cup \{a\} \cup \{w_3\} = \{a, w_3\}$.

Similarly we denote $y \diamond z$ as U. Then $U = \{w_3\}$ and $x \diamond U = x \diamond w_3 = \{w_3\}$. Hence we proved Remark 1.6.

1.7 Definition Let a and b be a pair of elements of the finite partly ordered set M such that $a \leq b$. We define as the interval bounded by the elements a and b and denote $[a, b]$ the set of all the elements x of M for which $a \leq x \leq b$ holds.

1.8 Definition A subset P of finite partly ordered set M will be said to be convex if it contains with any pair of elements a, b ($a \leq b$) every element x of the interval $[a, b]$; i.e. if $a, b \in P$ and $x \in [a, b]$ imply $x \in P$. (For $a = b$ the interval $[a, b]$ is onepoint subset).

1.9 Definition An element x of finite partly ordered set M different from the least one is called join-irreducible iff there exists one and only one element $y \in M$ which is previous element of x. We denote this fact by $y \rightarrow x$. Similarly an element $x \in M$
different from the greatest one is called meet-irreducible if there exits one and only one element $y \in M$ for which $x \rightarrow y$.

1.10 Definition By the length of a chain consisting of $r + 1$ elements that is of the form

$$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_r$$

(where the notation $x_i \rightarrow x_{i+1}$ means that the element x_i is covered by the element x_{i+1} - see [12]) we mean the non-negative number r. We assign to every element $x \in M$ the length of its chain from the greatest element. We denote this distance by $d(x)$.

1.11 Definition Let M be a finite partly ordered set. A subset $P \subseteq M$ with the greatest meet-irreducible element $b \in M$ and the least join-irreducible element $a \in M$ or the minimal elements $a_i, i = 1, 2, \ldots, n$ is said whole complex where for every pair $x, y \in P$ for which $d(x) > d(y)$ we have $x \mathord{\not\mathord{<}} y$ and for $d(x) = d(y)$ we have $x \parallel y$.

1.12 Definition Let M be a finite partly ordered set. A subset $Q \subseteq M$ with the greatest meet-irreducible element $b \in M$ and least join-irreducible element $a \in M$ or the minimal elements $a_i \in M$ for which every interval $[a_i, b], i = 1, 2, \ldots, n$ contains all elements $x \in M$ for which $a_i < x < b$ and the elements $u, v \in Q, u \in [a_i, b], v \in [a_j, b], i \neq j$ are incomparable is said semi-whole complex.

![Diagram of whole and semi-whole complexes](image.png)

Whole complex P
Semi-whole complex P

Figure 2
1.13 Lemma Let M be a finite partly ordered set which is constructed as a union of whole and semi-whole complexes. The individual components are in the set M ordered such that the join-irreducible elements b_i and meet-irreducible elements a_i are connected by chains $[a_i, b_i]$ of the length one. Then $M = (M \leq, \diamond, I)$ is a semihypergroup.

Proof.

1) At first we prove the associativity of the modified operation \diamond on any whole complex $P \subseteq M$. Let x, y, z be arbitrary elements of P. We denote $y \diamond z = A \subseteq P$.

a) At first we suppose that $x \succ v$ for every v from the subset A. (the subset A may be equal to y or z.) For both situations $x \diamond A = x$. Now we prove that also $(x \diamond y) \diamond z = x$. It is obvious that also $x \succ y$ and hence $x \diamond y = x$. Similarly $x \succ z$ which implies $x \diamond z = x$. We have $x \diamond (y \diamond z) = (x \diamond y) \diamond z$.

b) Now let us contrary suppose that $x \prec v$ for every v from the subset $A \subseteq P$. It is obvious that $y \preceq v$. Let $x \preceq v$ then $x \diamond y = y$ and $y \diamond z = A$. Now let $x \succ y$. Simultaneously the element x underlies sub all elements v from A and from the relation $y \odot z$ follows also

$x \diamond y = x \diamond z = A$. We have proved the equality relation $x \diamond (y \diamond z) = (x \diamond y) \diamond z$ again.

c) At last it remains the situation when $x \parallel v$ for every $v \in A$. This situation is possible only when $x \in A$ and from the definition of the modified hyperoperation \diamond follows $x \diamond (y \diamond z) = (x \diamond y) \diamond z$.

2) Now we suppose that all three elements are not in the same complex.

a) At first we suppose that all three elements are in three different whole complexes $P_1, P_2, P_3 \subseteq M$. Let $x \in P_1, y \in P_2, z \in P_3$ and complexes are linear comparable such that P_2 is over P_3 and P_1 over P_2. Then $y \diamond z = y$ hence $y \odot z = y$ and $x \diamond y = x$. From the opposite side $x \diamond y = x$ and $x \diamond z = x$. We have $x \diamond (y \diamond z) = (x \diamond y) \diamond z$.

b) Now we suppose, that two of complexes are comparable and the third is with this both uncomparable. Without loss of generality let P_2 and P_3 are comparable and such that P_2 is over P_3. Then $y \odot z = y$. Evidently $x \diamond y$ is equal to any join-irreducible element lying in the smallest complex which is over P_1 and P_2. We denote it by w. Simultaneously from $x \diamond y = w$ and $y \diamond y = y$ follows $(x \diamond y) \odot z = w \diamond z = w$ and the associativity is proved again.

c) At least we suppose that all three complexes are incomparable. Now the relations $y \odot z \parallel x$ and $x \diamond y \parallel z$ hold. From the definition of dual ideal (1.4) $x \in D_i(x)$ and $y \odot z \subseteq D_i(y \odot z)$ Hence $\min(D_i(x) \cap D_i(y \odot z)) = \min(D_i(x \odot y \odot z)) = x \diamond (y \odot z)$ and similarly $\min(D_i(x \odot y) \cap D_i(z) = \min(D_i(x \odot y \odot z)) = (x \odot y) \odot z$ and the associativity of the operation \diamond on finite partly ordered set which is constructed as a union of whole and semi-whole complexes is proved.

1.14 Definition Let M be a finite partly ordered set. Further we suppose that the element $b \in M$ is a meet-irreducible element and $a_i \in M, i = 1, 2, ..., n$ are incomparable minimal or join-irreducible elements, for which $a_i < b$. We assign all whole complexes $[a_i, b]$ by P_i. The union $P = \bigcup_{i \in I} P_i$ will be called a branch.

1.15 Lemma Let M be a finite partly ordered, $P \subseteq M$ a bunch. $P = (P \leq, \diamond, b)$ is a semihypergroup.
Proof.

1) $P = \bigcup_{i \in I} P_i$. Let us suppose that $x, y, z \in P_i$. The correctness of the relation $(x \diamond y) \diamond z = x \diamond (y \diamond z)$ follows from Lemma 1.13.

2) Let $(P_i - b) \cap (P_j - b) = \emptyset$ and $y, z \in P_i$, $x \in P_j$. Then $y \diamond z \in P_i$ and $x \diamond (y \diamond z) = b$ which is the smallest element over both expressions $y \diamond z$ and x. Simultaneously $x \diamond y = b$ and also $(x \diamond y) \diamond z = b$ for $z < b$ and the associativity is satisfied.

3) Let $(P_i - b) \cap (P_j - b) \neq \emptyset$. If $x, y, z \in P_i \cap P_j$ then the associativity of the operation \diamond follows from Lemma 1.14.

4) Let $y, z \in P_i$ and $x \in P_j$. Simultaneously let $x \neq b \wedge y \neq b \wedge z \neq b$.

 a) Let $y \diamond z = A \in P_i$ and $A \not\subseteq P_j$. We suppose that every element from $P_j - P_i$ is covered only by one element from P_i. (See Figure 3). Then $x \diamond A = x \diamond (y \diamond z) = v$. Hence $x \diamond y = v$ for v is the smallest element lying over both elements x and y. Simultaneously $z < v$ and we have $x \diamond (y \diamond z) = (x \diamond y) \diamond y$.

 b) Let $y \diamond z = A \in P_i$ and $A \not\subseteq P_j$. We suppose that every element from $P_j - P_i$ is covered by the set C of elements from P_i. Then $x \diamond A = x \diamond (y \diamond z) = C$. Hence $x \diamond y \in C$ for C is the set of smallest elements lying over both elements x and y. Simultaneously $z < v$ for every element $v \in C$ and we have $x \diamond (y \diamond z) = (x \diamond y) \diamond y$. The same situation rises when $v \in A$ or $C \subseteq A$.

 c) Finally let x is less then all elements of $y \diamond z = A$. Then $x \diamond (y \diamond z) = A$. On contrary let $x < y$ or $x < z$. We will suppose without loss of generality that $x < y$ then $x \diamond y = y$ and $y \diamond z = A$. Hence $x \diamond (y \diamond z) = (x \diamond y) \diamond y$ again and the Lemma is proved.

Figure 3

5
1.16 Theorem. Let M be a finite partly ordered set which is constructed as a union of whole, semi-whole complexes and bunches. Then $\mathcal{M} = (M \leq, \diamond, I)$ is a hypersemigroup. We call such hypersemigroup composed hypersemigroup for short C-hypersemigroup.

Proof. The affirmation follows from the Lemma 1.13 and Lemma 1.15.

References

