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Abstract

Physical analysis of phase transformation of materials consisting from several
(in general q substitutional and r interstitial) components, coming from the On-
sager extremal thermodynamic principle, following some ideas from [2], [1] and [3],
leads, as explained in [4], from the mathematical point of view, to a system of par-
tial differential equations of evolution type, including certain integral term, with
substantial differences in particular phases (α, γ) and in moving interface of finite
thickness (β), in whose center the ideal liquid material behaviour can be detected.
The numerical simulation of this process in MATLAB, mentioned in [5], is able to
explain some phenomena (e.g. the interface velocity as a function of temperature)
better than known simplified models, assuming the sharp interface and additional
boundary and transfer conditions. This paper suggests an effective algorithm for
the numerical analysis of the above mentioned system, applicable even for very
complicated evaluations of chemical potentials.

1 Basic equations

The evolution of q−1+r molar fractions c in one dimension is characterized in a Cartesian
coordinate x and in time t. The coordinate x moves from the left to the right together
with the interface of constant thickness h (from x = 0 to x = h); the total size of the
specimen is H (in practice much greater than h), the system is assumed to be closed (with
zero boundary fluxes) on the interval 〈xL(t), xR(t)〉. One missing molar fraction can be
derived from the condition c1 + . . . cq = 1. The resulting system of equations, starting
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from some a priori known initial values of c, reads

Bc′ + (K + vN)c −N
C

τ
= vNc� −NΩj� −N

C×

τ
(1)

where all variables are evaluated in time t, exept C× = C(t − τ), τ denotes the time
interval, referring to the implicit Euler method; (the system of differential equations can
be derived from such difference ones using the limit passage τ → 0), B, K and N are
square matrices of order q − 1 + r, B full, K and N diagonal, B and K depending on c,
N dependent on x only, Ω is the constant molar volume and

C(x, t) =
∫ x

0
c(ξ, t)dξ ,

c� refers to molar fractions and j� to diffusive fluxes at x = 0 and

v =
Ω

M

q+r∑
i=1

∫ h

0
ciµ

′
i dx (2)

for prescribed chemical potentials µi as complicated functions of c; a prime symbol denotes
a derivative with respect to x.

The system (1) comes (after rather long computations, performed in [4]), from the
mass conservation law

∂c/∂t− vc′ + Ωj′ = 0 ;

another (more evident) its consequence is

(CR − CR×)/τ − v(cR − c�) − Ωj� = 0 , (CL − CL×)/τ − v(cL − c�) − Ωj� = 0 ; (3)

upper indices L and R here refer to values at xL and xR, respectively. As (1) generates an
iterative procedure with B, K, v and xL set by c from the preceding iteration (or time
step), it is important to suggest an inexpensive solver of the system of linear algebraic
equations, derived from (1), using the finite difference method. Unfortunately, such system
is not triangular, thus, because of the presence of unknowns c� and j� it is not possible to
express c in all nodes step-by-step; even c� and j� cannot be determined by (3) completely.

2 Computational algorithm

Let us notice that C can be computed as integrals of c − ca instead of c, using arbitrary
reference constant admissible molar fractions ca. Our problem is to find c from (1) with v
inserted from (2). Clearly (1) requires discretization in x, e. g. using the finite difference
method, whereas v from (2) needs numerical integration, e. g. by the Simpson rule, and



C (which can be computed from integrals of c− ca instead of c, using arbitrary reference
constant admissible molar fractions ca). should be evaluated in the corresponding way.
However, for simplicity we shall explain the main idea of the computational algorithm
using the original semi-discretized system (1).

Let c�e be some estimate of c� (from the preceding iteration, if not available yet then
from the previous time step). Let us consider c�m = ξI

mc�em and j�m = ξII
mvc�em for some

positive real 2(q − 1 + r) factors ξI
m and ξII

m. We are allowed to seek for molar fractions c
in form c = c� + c̃ where c̃m = c̃O

m + ξI
mc̃I

m + ξII
m c̃II

m. Then (1) degenerates to

Bc̃′ + Kc̃ + vNc̃ −N
C̃

τ
= FO + ξIF

I + ξIIF
II

with C̃ integrated from c̃, unlike C integrated from c − ca in general, and with

FO = N
C× − cax

τ
, F I =

(
N

x

τ
−K

)
c�e , F II = −NΩvc�e .

Thus we are able to solve all c̃O, c̃I and c̃II separately (which is very simple) and just
at the end to calculate ξI and ξII (q−1+ r)-times from the system of two linear algebraic
equations [

C̃LI
m /τ − vc̃LI

m + c�emxL/τ C̃LII
m /τ − vc̃LII

m

C̃RI
m /τ − vc̃RI

m + c�emxR/τ C̃RII
m /τ − vc̃RII

m

]
·
[

ξI
m

ξII
m

]
=

[
−C̃LO

m /τ + vc̃LO
m + CL×

m /τ + ca
mxL/τ

−C̃RO
m /τ + vc̃RO

m + CR×
m /τ + ca

mxR/τ

]
. (4)

Now let us sketch the fully discretized algorithm, generating (in each time and iterative
step) a system of 2(q− 1+ r) linear algebraic equations. Using the above explained tricks
with parameters ξI and ξII , we have a very inexpensive solver; this is very useful in
situations where e. g. the algebraic expressions for evaluation of µ(c) contain thousands
of instruction, preprocessed by MAPLE or toolbox symbolic from MATLAB environment.

We can write (1) in form

B
s cs

∆s

+
(
K

s
+ vN

s
) cs

2
−N

s ∆sc
s

2τ
(5)

= B
s cs−1

∆s

−
(
K

s
+ vN

s
) cs−1

2
+ vN

s
c� −N

s
Ωj� −N

s 2(C×s − Cs−1) − ∆sc
s−1

2τ

where an integer s refers to the s-th node in a sufficiently large interval, decomposed
to subintervals 〈xs−1, xs〉 (values at xL and xR, in general not identical with any xs, are
interpolated), ∆s = xs−xs−1 and overlined s-indexed symbols refer to averaged values on



〈xs−1, xs〉; let us remind that c� coincides with cs always for some s. Clearly such scheme
forces sufficiently small ∆s in comparison with τ . We would like to solve c0, c1, . . . , cs, . . .
effectively, step by step, using three versions of right-hand sides again, and complete them
a posteriori, after setting ξI and ξII and consequently c� and j�.

The reformulation of (4) in the notation of (5) is important for the programmer;
nevertheless, here can be left to the patient reader. The following simulation example
makes use of this algorithm, applying the semi-empirical chemical potentials from the
Montanuniversität Leoben (Austria) and from the Institute of Physics of Materials of the
Czech Academy of Sciences in Brno.

3 Example of numerical simulation

For the physical interpretation of all following material characteristics let us refer to [3].
We have the purely substitutional three-component Fe-Cr-Ni system; in our notation
q = 3 and r = 0, moreover Fe will be dominant. The chemical potential µi(x, c) can be
evaluated at every point of the specimen as

µi(x, c) = wf (x)µf
i (c) ,

making use of certain continuous weight functions wf (x), having the properties

wα(x) = 1 , wγ(x) = 0 if xL < x < h/2 ,
wα(x) = 0 , wγ(x) = 1 if h/2 < x < xR ,
wβ(x) = 1 − wα(x) − wγ(x) if xL < x < xR .

The tracer diffusion coefficients Dk, k ∈ {1, 2, 3}, can be interpolated using the formula

lnDk = wf lnDf
k ,

thus it is sufficient to set nine values Df
k . In general we have

Df
k = D

f

k0 exp

(
−Ef

RT

)
, M = M0 exp

(
− E?

RT

)
.

The applied constants are for Cr (corresponding to k = 1) Dα
10 = 0.00032 m2 s−2, Dβ

10 =
0.00022 m2 s−2, Dγ

10 = 0.00035 m2 s−2, for Ni (k = 2) Dα
20 = 0.000048 m2 s−2, Dβ

20 =
0.000022 m2 s−2, Dγ

20 = 0.000035 m2 s−2, for Fe (k = 3) Dα
30 = 0.00016 m2 s−2, Dβ

30 =
0.00011 m2 s−2, Dγ

30 = 0.00007 m2 s−2, and for all components Eα = 240000 Jmol−1,
Eβ = 155000 Jmol−1, Eγ = 286000 Jmol−1, E? = 140000 Jmol−1; it remains to set only
M0 = 0.00041 m2 s kg−1.



Figure 1: Distributions of Cr and Ni molar fractions in Fe-Cr-Ni system

The figure shows three couples of time-variable distributions of c1 and c2. The interface
thickness is h = 5·10−10 m, the specimen length H = 10−4 m. From the originally constant
mole fractions c1 = 0.001 and c2 = 0.019 (consequently c3 = 0.980) in all phases due to
the phase transformation driven by changes in chemical potentials, the time development
leads to qualitative new distributions. The left figures show mole fractions inside the
interface, the central ones document different behaviour of Cr and Ni components near
the interface, the right ones show larger-scale quasi-constant distribution with seemingly
sharp interface, whose physically transparent macroscopic description is not available.

Several directions of possible generalizations, even of types not included in this paper,
are discussed in [4], p. 85. However, [4] contains only one example of modelling of non-
stationary redistribution of molar fractions, moreover only near the initial time; a more
extensive study is being prepared for [6].
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