Výuka analytické geometrie v programu Maple

Josef Rak

Univerzita Pardubice, Fakulta elektrotechniky a informatiky / Gymnázium Pardubice e-mail: <u>peparak@gmail.com</u>

Abstrakt

Tento dokument se zabývá využitím programu Maple výuku analytické geometrie. Zabývá se integrovaným balíčkem geometry a také ručním způsobem řešení s využitím funkcí assign a unassign. V tomto dokumentu jsou také popsány možnosti zobrazení geometrických útvarů.

1. Analytická geometrie bez počítače

Výuka analytické geometrie je pro studenty velice nezáživné téma. Problémem jsou zdlouhavé, numericky náročné a dlouho trvající výpočty. Někteří studenti díky tomu téma nepochopí a učí se příklady zpaměti. Jeden způsob, jak výuku zlepšit, je využít program Maple.

2. Balík GEOMETRY

Tento balík je určen pro práci s geometrickými útvary v rovině. Podporuje mj. následující geometrické objekty: bod, přímka, kružnice, elipsa, parabola, hyperbola.

Následující příklad ukazuje práci s kružnicí. Její obecná rovnice je:

$$x^2 + y^2 + 25x + 9y = 36$$

1 [> with(geometry):
2 [> _EnvHorizontalName := 'x': _EnvVerticalName := 'y':
3 [> circle(K, x² + y² + 25x + 9y = 36):
4 [> radius(K);

$$\frac{1}{2}\sqrt{425}\sqrt{2}$$

5 [> coordinates(center(K));
 $\left[\frac{-25}{2}, \frac{-9}{2}\right]$

Obrázek 1. Ukázka programu Maple – kružnice zadaná obecnou rovnicí

Popišme si příkazy:

- 1. spouštění balíku geometry
- 2. pojmenování os
- 3. zadání kružnice K její obecnou rovnicí
- 4. zjištění poloměru kružnice K
- 5. zjištění souřadnic středu K

Každý geometrický útvar se dá zadat několika způsoby. Ukažme si jiný způsob zadání kružnice – třemi body:

Obrázek 2. Ukázka programu Maple – kružnice zadaná třemi body

Samozřejmostí je kontrola správnosti zadání. V následujícím příkladu zadáme kružnici kolineárními body:

> circle(L, [point(A, 0, 0), point(B, 1, 1), point(C, 2, 2)]); Error, (in geometry:-circle) three given points are AreCollinear

Obrázek 3. Ukázka programu Maple – kružnice zadaná třemi kolineárními body

Pro řešení vzájemných poloh útvarů pak lze použít příkaz **solve**, která řeší rovnice a soustavy. Jednotlivé rovnice se oddělují čárkou.

$$\begin{bmatrix} > solve([Equation(L), x + y = 2]); \\ (y = 1, x = 1), (y = -1, x = 3) \end{bmatrix}$$

Obrázek 4. Ukázka programu Maple – vzájemná poloha

Využití balíku geometry je pro uživatele nejjednodušší. Problém je v tom, že pokud ho student použije, vůbec nemusí vědět, jakým způsobem dané věci vypočítat. Lze ho úspěšně použít pro demonstraci jednotlivých útvarů (například u kružnice ukázat rovnici kružnice, a vysvětlení jak jednotlivé parametry kružnici ovlivňují).

V následující tabulce uveď me názvy příkazů nejčastějších geometrických útvarů, které se učí na střední škole:

Bod	point
Přímka	line
Kružnice	circle
Parabola	parabola
Elipsa	ellipse
Hyperbola	hyperbola

Detailní popis všech funkcí a parametrů lze nalézt v nápovědě programu Maple[1]. Stačí zadat příkaz z předchozí tabulky a vybrat variantu geometry – viz obrázek níže.

Obrázek 5. Nápověda programu Maple[1]

3. Využití příkazů "assign", "unassign" a "solve"

Pokud budeme chtít, aby si studenti uvědomovali i postup, lze využít proměnné programu Maple a příkazy **assign, unassign** a **solve**.

Proměnná se v programu Maple nemusí definovat. Stačí jen vymyslet název a něco do ní přiřadit pomocí operátoru := (například obecnou rovnici přímky uložíme do \mathbf{p} následujícím způsobem):

$$p \coloneqq x + 2y - 2 = 0;$$

Pokud chceme toto přiřazení zrušit, použijeme příkaz **unassign** – v následujícím příkazu vymažeme proměnnou **a** a **p** (proměnné se píší do uvozovek a oddělují čárkou).

Výstup příkazu solve v případě soustavy je

$${a = 3, b = 1}$$

v případě rovnice s jedním řešením

3

v případě více řešení jsou jednotlivá řešení oddělena čárkou,

2,3

nebo v případě soustavy

$$\{x = -1, y = -2\}, \{x = 0, y = 3\}$$

Výsledek příkazu **solve** si můžeme uložit do proměnné a k ní se pak dostat. Přístup k uloženým řešením si ukažme v následujícím obrázku:

> $prvni:=solve({x+y=1, x^2+3*y=3});$ prvni:=(y=-2, x=3), (y=1, x=0)> prvni[1]; (y=-2, x=3)> prvni[2]; (y=1, x=0)> $druhe:=solve(x^2-2*x-4=0);$ $druhe:=1+\sqrt{5}, 1-\sqrt{5}$ > druhe[1]; $1+\sqrt{5}$ > druhe[2]; a:=druhe[2]; $a:=1-\sqrt{5}$ > a; $1-\sqrt{5}$

Problém je, jak uložit řešení soustavy, tj. jak najednou uložit výsledek **prvni[1].** K tomu účelu je v program Maple příkaz assign, který zařídí uložení výsledků do nové proměnné **x** a **y**.

Obrázek 7. Příkaz assign

Využitím těchto příkazů pak lze následujícím způsobem řešit úlohy analytické geometrie.

> restart; > primka:= y=k*x+q; primka := y = k x + q(1)> x:=1: y:=2: > r1:=primka; rl := 2 = k + q(2)> unassign('x','y'); > primka; y = kx + q(3) > r1; 2 = k + q(4) > x:=3: y:=5: r2:=primka; r2 := 5 = 3k + q(5) > unassign('x','y'): > reseni:=solve({r1,r2}); *reseni* := $\left\{ q = \frac{1}{2}, k = \frac{3}{2} \right\}$ (6) > assign(reseni); > vysledek:=primka; vysledek := $y = \frac{3}{2}x + \frac{1}{2}$ (7) > unassign('k','q'); > primka; y = kx + q(8) > vysledek; $y = \frac{3}{2}x + \frac{1}{2}$ (9)

Obrázek 8. Přímka vedená dvěma body.

Jednotlivé kroky pak lze popsat následujícím způsobem:

- 1. napsat obecnou rovnici přímky
- 2. dosadit bod [1,2] do obecné rovnice přímky, výsledek uložit do r1.
- 3. zrušit přiřazení bodu získáme opět obecnou rovnici přímky
- 4. zobrazení rovnice první přímky
- dosadit bod [3,5] do obecné rovnice přímky, výsledek uložit do r2 a opět zrušit přiřazení bodu
- 6. máme soustavu rovnic r1 a r2, tu vyřešíme
- 7. použijeme příkaz assign tedy spočítané k a q do rovnice přímky a dostáváme výsledek.

Body 1,2,5,6 přesně odpovídají výpočtovému postupu. Program Maple provádí numerické výpočty a student jen zadává rovnice, dosazuje do nich a nechá si programem Maple spočítat výsledky.

Tento postup výuky je dobrý, protože student lépe pochopí postup výpočtů jednotlivých příkladů.

6. Zobrazení výsledků

Na jednotlivé útvary můžeme matematicky pohlížet, jako na funkce zadané implicitně. Pokud využijeme metodu **implicitplot**, můžeme si spočtené výsledky graficky ověřit. Zobrazit můžeme i více útvarů do jednoho obrázku (jednotlivé implicitní funkce se oddělují čárkou, počet barev a funkcí musí souhlasit) – viz následující příklad.

Obrázek 9. Grafická kontrola

Místo implicitní funkce se může samozřejmě použít proměnná, ve které je funkce uložena.

Tím získá student velkou výhodu. Grafickou kontrolu lze provést i při čistě numerickém výpočtu na papír a studenti se mohou sami kontrolovat.

7. Závěr

Program Maple výuku analytické geometrie velice usnadňuje. Hlavní přínosy jsou následující:

- Balíček geometry spolu se zobrazovacími nástroji umožní jednoduchý, názorný výklad jednotlivých útvarů
- Při správném využití příkazů assign a unassign si studenti uvědomí principy výpočtů
- Zobrazení umožňuje okamžitou vizuální kontrolu výsledků.

Program se ale nesmí přeceňovat a je nutné dotáhnout výuku až do okamžiku, když studentům stačí jen "tužka a papír".

Zdroje:

- [1] Manuál programu Maple <u>www.maplesoft.cz</u>
- [2] J. Rak Manuál Maple pro studenty <u>http://www.gypce.cz/poc_mat/</u>