On non-periodic homogenization

Jan Franců

Brno University of Technology, Faculty of Mechanical Engineering, Department of Mathematics e-mail: francu@fme.vutbr.cz

1 Introduction

The model homogenization problem deals with behavior as $\varepsilon \to 0$ of solutions to a sequence of elliptic equations

$$-\operatorname{div}\left(a^{\varepsilon}(x)\,\nabla u_{\varepsilon}\right) = f \tag{1}$$

in a domain Ω in \mathbb{R}^N completed by a suitable boundary conditions e.g. $u^{\varepsilon} = 0$ on $\partial \Omega$. The matrix of coefficients $a^{\varepsilon} \equiv (a_{ij}^{\varepsilon}(x))_{i,j}$ are indexed by a sequence $\{\varepsilon\}$ of small positive parameters ε_k converging to zero, the subscript k in ε_k being omitted.

In the classical periodic homogenization with basic cell $Y = (0,1)^N$ the coefficients a^{ε} are defined by a Y-periodic function a(y) — i.e. a(y+k) = a(y) for each $k \in \mathbb{Z}^N$ — by setting

$$a^{\varepsilon}(x) = a\left(\frac{x}{\varepsilon}\right).$$

The coefficients a_{ij}^{ε} form a sequence of periodic functions with diminishing period ε .

The are several deterministic generalization, e.g. the oscillations need not be uniform, i.e. $a^{\varepsilon}(x) = a(x, x/\varepsilon)$, where a(x, y) is periodic in y; the coefficients a(x, y) may be almost-periodic functions in y; the coefficients may oscillates with two different periodic scales (reiterated homogenization), e.g. $a^{\varepsilon}(x) = a(x, x/\varepsilon, x/\varepsilon^2)$. And we do not mention the stochastic coefficients.

In the contribution we shall try to outline a new approach introduced by G. Nguetseng in [1] which aims to cover all deterministic cases.

2 Homogenization structure and auxiliary results

The basic concept is called Homogenization structure. Let us denote by Π the space of all bounded continuous functions on \mathbb{R}^N which are ponderable, i.e. functions u having the mean value M(u) defined as a $L^{\infty}(\mathbb{R}^N)$ -weak^{*} limit of $u^{\varepsilon}(x) = u(x/\varepsilon)$ as $\varepsilon \to 0$. The space Π with the supremum norm is a Banach space. In addition, it is a commutative Banach algebra with unit and multiplication defined by $(u \cdot v)(x) = u(x) \cdot v(x)$.

A separable multiplicative subgroup Γ of Π is called *H*-structure. It generates a Banach algebra $A = A_{\Sigma}$ containing constant functions. This subalgebra in Π will be called *H*-algebra.

Spectrum $\Delta(A)$ of the algebra A, see [2], is a set of all nonzero multiplicative linear forms on A. It is a subset of the dual A^* . It can be identified also with all proper maximal ideals of the algebra A. In case when A is the algebra of all continuous Y-periodic functions, the spectrum $\Delta(A)$ can be identified with the period Y.

The Gelfand representation $\mathcal{G} : A \to \mathcal{C}(\Delta A)$ assigns to a function $a \in A$ a continuous function \hat{a} on $\Delta(A)$ by relation $\hat{a}(f) = f(a)$ for all $f \in \Delta(A)$. With the weak product topology the spectrum $\Delta(A)$ is a compact metric space.

The mean value mapping M generates unique Radon measure β on $\Delta(A)$ such that for $u \in A$

$$M(u) = \int_{\Delta(A)} \mathcal{G}(u)(s) \mathrm{d}\beta(s).$$

The closure of the Banach algebra $A = A_{\Sigma}$ in the norm $\sup_{0 < \varepsilon \leq 1} (\int_{|x| < 1} |u(\frac{x}{\varepsilon})|^p)^{1/p}$ is a Banach space denoted by \mathcal{X}_{Σ}^p and the Gelfand mapping can be extended to $\mathcal{G} : \mathcal{X}_{\Sigma}^p \to L^p(\Delta(A))$ and introduce Lebesgue spaces on $\Delta(A)$. Similarly the subspace of smooth functions in A enables to differentiate continuous functions of $\mathcal{C}(\Delta(A))$ and define a Sobolev-type space $H^1(\Delta(A))$.

The main tool for getting the result is a generalization of 2-scale convergence:

DEFINITION Sequence $\{u_{\varepsilon}\}_{\varepsilon}$ in $L^2(\Omega)$ is said to weakly Σ -converge to an $u_0 \in L^2(\Omega, \Delta(A))$ if

$$\int_{\Omega} u_{\varepsilon}(x) v^{\varepsilon}(x) \mathrm{d}x \to \iint_{\Omega \times \Delta(A)} u_0(x,s) \widehat{v}(x,s) \mathrm{d}x \, \mathrm{d}\beta(s)$$

for each $v \in L^2(\Omega; A)$, where $v^{\varepsilon}(x) = v(x, x/\varepsilon)$ and $\hat{v} = \mathcal{G} \circ v$.

The convergence brings a compactness: each sequence u_{ε} bounded in $L^2(\Omega)$ contains a subsequence $u_{\varepsilon'}$ weakly Σ -converging to an $u_0 \in L^2(\Omega, \Delta(A))$. A stronger version is called strong Σ -convergence.

Finally an *H*-structure Σ is called to be *proper* if it satisfies some density, regularity and reflexivity conditions. The *H*-structures of periodic and almost periodic functions are proper.

3 Homogenization problem

For each $\varepsilon > 0$ the solution $u_{\varepsilon} \in H_0^1(\Omega)$ is supposed to satisfy the equation (1) with $f \in H^{-1}(\Omega)$ in a bounded domain Ω of \mathbb{R}^N . The coefficients are given by $a_{ij}^{\varepsilon}(x) = a_{ij}(x, x/\varepsilon)$, where a_{ij} are symmetric and satisfies ellipticity condition.

In this setting let Σ be a proper *H*-structure on \mathbb{R}^N and assume $a_{ij}(x, \cdot) \in \mathcal{X}_{\Sigma}^2$ for each $x \in \overline{\Omega}$. We put $\mathbb{F}_0^1 = H_0^1(\Omega) \times L^2(\Omega; H_{\sharp}^1(\Delta(A)))$, where the *H*-algebra *A* is generated by Σ . Using $\widehat{a}_{ij} = \mathcal{G}(a_{ij}) \in C(\overline{\Omega}, L^{\infty}(\Delta))$ we define a bilinear elliptic form \widehat{a}_{Ω} on $\mathbb{F}_0^1 \times \mathbb{F}_0^1$ for the cell problem. Then using strong Σ convergence of the coefficients and weak Σ convergence the the solutions the proof can follow the idea of the proof based on 2-scale convergence. In this case the homogenized coefficients of the homogenized equation $-\operatorname{div}(q(x) \nabla u^*) = f$ are given by

$$q_{ij}(x) = \int_{\Delta(x)} \left[\widehat{a}_{ij}(x,s) - \sum_{k} \widehat{a}_{ik}(x,s) \partial_k \chi^j(x,s) \right] d\beta(s)$$

where χ^j are solutions to a "cell" problem on $\Delta(A)$.

4 Conclusions

The outlined approach introduced by Nguetseng in [1] uses deep results of functional analysis of Banach algebras. It seems to solve the problem of finding proper space for test functions in the classical two-scale convergence. Moreover, it seems to cover deterministic non-periodic homogenization problems. It can be generalized to reiterated homogenization.

Acknowledgement. This research was supported by the Grant Agency of the Czech Republic, grant No. 201/08/0874.

References

- G. Nguetseng. Homogenization structures and applications Z. Anal. Anwendungen, part I: 22: 73-107, 2003 and part II: 23: 482-508, 2004.
- [2] R. Larsen. Banach Algebras. Marcel Dekker, New York, 1973.