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Abstract

In this contribution a special system of two discrete equations is investigated. The studied
equations are similar to the well known Verhulst’s equation. Main attention is paid to the
asymptotic behavior of solutions of the system. Previous results of the authors are used to
show that there exists a family of solutions whose graphs stay in a prescribed domain.

1 Introduction

In recent works of the authors ([3]–[6], [9]) the asymptotic behavior of solutions of systems of
difference equations is studied. The basic form of such system is

∆u(k) = F (k, u(k)) (1)

with k ∈ Z∞a := {a, a + 1, . . . }, a ∈ N is fixed, u = (u1, . . . , un), ∆u(k) = u(k + 1) − u(k) and
F = (F1, . . . , Fn) : Z∞a × Rn → Rn.

If we prescribe an initial condition

u(a) = ua = (ua
1, . . . , u

a
n) ∈ Rn, (2)

then the initial problem (1), (2) has a unique solution defined on Z∞a .
In paper [5] one can find sufficient conditions with respect to the right-hand side of system (1)

that give the guarantee that all solutions of system (1) starting at a point in a given domain
stay in this domain. Here this result is applied to the investigation of the asymptotic behavior
of solutions of the system

∆u1(k) = u2(k) (β1(k)− γ1(k)u1(k)) ,

∆u2(k) = u1(k) (β2(k)− γ2(k)u2(k))
(3)

where γi, βi : Z∞a → R+ := (0,∞), i = 1, 2. This system is similar to the scalar equation

∆u(k) = u(k) (β(k)− γ(k)u(k))

which is called (with regard to terminology used in [1]) the Verhulst’s equation.
We present here the result of paper [5] in a slightly modified form to avoid the introduction

of too many new notions.



Theorem 1 Let bi, ci : Z∞a → R, i = 1, . . . , n, be functions such that bi(k) < ci(k) for each
k ∈ Z∞a and suppose that for all the points M = (k, u1, . . . , un), k ∈ Z∞a , bi(k) ≤ ui ≤ ci(k),
i = 1, . . . , n, the following conditions hold:
If ui = bi(k) for some i ∈ {1, . . . , n}, then

bi(k + 1) < bi(k) + Fi(M) < ci(k + 1). (4)

If ui = ci(k) for some i ∈ {1, . . . , n}, then

bi(k + 1) < ci(k) + Fi(M) < ci(k + 1). (5)

Let, moreover, the functions

Gi(w) := w + Fi(k, u1, . . . , ui−1, w, ui+1, . . . , un), i = 1, . . . , n, (6)

be monotone on [bi(k), ci(k)] for every fixed k ∈ Z∞a and every fixed u1, . . . , ui−1, ui+1, . . . , un,
uj ∈ [bj(k), cj(k)], j = 1, . . . , i− 1, i + 1, . . . , n.
Then for any initial condition (2) with bi(a) < ua

i < ci(a), i = 1, . . . , n, the corresponding
solution u = u∗(k) = (u∗1(k), . . . , u∗n(k)) of initial problem (1), (2) satisfies the inequalities

bi(k) < u∗i (k) < ci(k) (7)

for every k ∈ Z∞a .

2 Application of the general result to equation (3)

Now we will apply Theorem 1 to system (3). Let us denote

ωi(k) =
βi(k)
γi(k)

, i = 1, 2,

and

f1(k) = − ∆ω1(k)
ω2(k)γ1(k)

, f2(k) = − ∆ω2(k)
ω1(k)γ2(k)

.

Theorem 2 Let the functions γi, βi : Z∞a → R+, i = 1, 2, be given.
Suppose that for every k ∈ Z∞a the following assumptions hold:

1) ∆ωi(k) < 0 for i = 1, 2.

2) ∆ωi(k) + fi(k + 1) > 0 for i = 1, 2.

3) f1(k) + f2(k)(∆ω1(k))/ω2(k) > 0 and f2(k) + f1(k)(∆ω2(k))/ω1(k) > 0.

4) ∆fi(k) > 0 for i = 1, 2.

Then for any initial condition (2) with

ωi(a) < ua
i (k) < ωi(a) + fi(a), i = 1, 2,

the solution u = u∗(k) = (u∗1(k), u∗2(k)) of initial problem (3), (2) satisfies the inequalities

ωi(k) < u∗i (k) < ωi(k) + fi(k) (8)

for i = 1, 2 and k ∈ Z∞a .



Proof. We will apply Theorem 1 with

F1(k, u1, u2) = u2 · (β1(k)− γ1(k)u1), F2(k, u1, u2) = u1 · (β2(k)− γ2(k)u2),

bi(k) = ωi(k), ci(k) = ωi(k) + fi(k), i = 1, 2.

Remark that due to assumption 1), fi(k) > 0 for k ∈ Z∞a , i = 1, 2.
We will prove that all the assumptions of Theorem 1 are satisfied.
The conditions (4) and (5) for i = 1 in our case become:

If for some k ∈ Z∞a , u1 = b1(k) and b2(k) ≤ u2 ≤ c2(k), then

b1(k + 1) < b1(k) + F1(k, b1(k), u2) < c1(k + 1), (9)

and if u1 = c1(k) and b2(k) ≤ u2 ≤ c2(k), then

b1(k + 1) < c1(k) + F1(k, c1(k), u2) < c1(k + 1). (10)

For i = 2, the corresponding conditions would be similar. We will prove only the conditions for
i = 1, because due to the symmetry of the studied system, the case i = 2 is analogous.

Start with inequalities (9). Substituting for b1(k) and then for ω1(k), we get

b1(k) + F1(k, b1(k), u2) = ω1(k) + u2 · (−γ1(k)ω1(k) + β1(k)) = ω1(k).

Thus, inequalities (9) reduce to

ω1(k + 1) < ω1(k) < ω1(k + 1) + f1(k + 1).

The first inequality (ω1(k + 1) < ω1(k)) is fulfilled due to assumption 1). The second inequality
is equivalent to the inequality

∆ω1(k) + f1(k + 1) > 0

which is supposed to be valid in assumption 2). Thus, inequalities (9) hold.
Now let us concentrate on inequalities (10). Again, substituting the appropriate values, we

get

c1(k) + F1(k, c1(k), u2) = ω1(k) + f1(k) + u2 · (−γ1(k)(ω1(k) + f1(k)) + β1(k)) =

= ω1(k) + f1(k)− u2γ1(k)f1(k) = ω1(k) + f1(k) + u2
∆ω1(k)
ω2(k)

.

We have to prove that

ω1(k + 1) < ω1(k) + f1(k) + u2
∆ω1(k)
ω2(k)

< ω1(k + 1) + f1(k + 1). (11)

Find the lower and the upper estimate of ω1(k) + f1(k) + u2(∆ω1(k))/ω2(k). In the following
considerations we will use the fact that ∆ω1(k) < 0 (see assumption 1)).

ω1(k) + f1(k) + u2
∆ω1(k)
ω2(k)

≥ ω1(k) + f1(k) + (ω2(k) + f2(k))
∆ω1(k)
ω2(k)

=

= ω1(k) + f1(k) + ∆ω1(k) + f2(k)
∆ω1(k)
ω2(k)

= ω1(k + 1) + f1(k) + f2(k)
∆ω1(k)
ω2(k)

,

ω1(k) + f1(k) + u2
∆ω1(k)
ω2(k)

≤ ω1(k) + f1(k) + ω2(k)
∆ω1(k)
ω2(k)

=

= ω1(k) + f1(k) + ∆ω1(k) = ω1(k + 1) + f1(k).



To prove the first inequality of (11), it is sufficient to prove that

ω1(k + 1) < ω1(k + 1) + f1(k) + f2(k)
∆ω1(k)
ω2(k)

which gives

0 < f1(k) + f2(k)
∆ω1(k)
ω2(k)

.

This inequality is fulfilled due to assumption 3) of the Theorem. As for the second inequality
from (11), it is sufficient to show that

ω1(k + 1) + f1(k) < ω1(k + 1) + f1(k + 1).

This holds because of assumption 4). That means that inequalities (10) hold.
As the function

G1(w) := w + F1(k, w, u2) = w + u2 · (−γ1(k)w + β1(k))

is linear with respect to its argument w for every fixed k ∈ Z∞a and every fixed u2 such that
b2(k) ≤ u2 ≤ c2(k), it is monotonous, too. An analogous reasoning could be done also for the
function

G2(w) := w + F2(k, u1, w) = w + u1 · (−γ2(k)w + β2(k)) .

We have shown that all the assumptions of Theorem 1 are fulfilled and thus every solution of
system (3) given by an initial condition (2) with ωi(a) < ua

i < ωi(a) + fi(a), i = 1, 2, satisfies
conditions (8).

Example 1 Let us consider the system of equations

∆u1(k) = u2(k)
(

3
k
− u1(k)

)
,

∆u2(k) = u1(k)
(

1
k4
− 1

k2
u2(k)

)
.

(12)

We will show that for k ∈ Z∞2 , all the assumptions of Theorem 2 are fulfilled. In this case we
set

ω1(k) =
3
k

, ω2(k) =
1
k2

.

Then

∆ω1(k) =
3

k + 1
− 3

k
= − 3

k(k + 1)
, ∆ω2(k) =

1
(k + 1)2

− 1
k2

= − 2k + 1
k2(k + 1)2

,

and

f1(k) = −−3/(k(k + 1))
(1/k2) · 1

=
3k

k + 1
,

f2(k) = −−(2k + 1)/(k2(k + 1)2)
(3/k) · (1/k2)

=
k(2k + 1)
3(k + 1)2

.

Assumption 1) of Theorem 2 is obviously fulfilled.
Prove the validity of assumption 2). First, for i = 1:

∆ω1(k) + f1(k + 1) = − 3
k(k + 1)

+
3(k + 1)
k + 2

=
3(k3 + 2k2 − 2)
k(k + 1)(k + 2)



The last expression is positive for any k ∈ N.
Now for i = 2:

∆ω2(k) + f2(k + 1) = − 2k + 1
k2(k + 1)2

+
(k + 1)(2k + 3)

3(k + 2)2
=

=
2k6 + 9k5 + 15k4 + 5k3 − 24k2 − 36k − 12

3k2(k + 1)2(k + 2)2
.

It can be shown that this expression is positive for k ∈ Z∞2 .
Thus, assumption 2) holds.

The desired inequality in assumption 3) for i = 1 is in our case

f1(k) + f2(k)
∆ω1(k)
ω2(k)

=
3k

k + 1
+

k(2k + 1)
3(k + 1)2

· −3/(k(k + 1))
1/k2

=

=
3k

k + 1
− k2(2k + 1)

(k + 1)3
=

k(k2 + 5k + 3)
(k + 1)3

> 0.

This holds for any k ∈ N.
For i = 2 we get

f2(k) + f1(k)
∆ω2(k)
ω1(k)

=
k(2k + 1)
3(k + 1)2

+
3k

k + 1
· −(2k + 1)/(k2(k + 1)2)

3/k
=

=
k(2k + 1)
3(k + 1)2

− 2k + 1
(k + 1)3

=
2k3 + 3k2 − 5k − 3

3(k + 1)3

which is positive for k ∈ Z∞2 .
As for assumption 4), we get for i = 1

∆f1(k) =
3(k + 1)
k + 2

− 3k

k + 1
=

3
(k + 1)(k + 2)

> 0

and for i = 2

∆f2(k) =
(k + 1)(2k + 3)

3(k + 2)2
− k(2k + 1)

3(k + 1)2
=

3k2 + 7k + 3
3(k + 1)2(k + 2)2

> 0.

All the assumptions of Theorem 2 are fulfilled and thus if there is prescribed an initial con-
dition u(2) = (u(2)

1 , u
(2)
2 ) such that

3
2

< u
(2)
1 <

3
2

+
3 · 2
2 + 1

,
1
22

< u
(2)
2 <

1
22

+
2(2 · 2 + 1)
3(2 + 1)2

,

then the corresponding solution u = u∗(k), k ∈ Z∞2 , of system (12) satisfies the conditions

3
k

< u∗1(k) <
3
k

+
3k

k + 1
,

1
k2

< u∗2(k) <
1
k2

+
k(2k + 1)
3(k + 1)2

.
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