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We use the following notation: for integers s, q, s ≤ q, we define Zq
s := {s, s + 1, . . . , q} where

s = −∞ and q = ∞ are admitted, too. The topic of our study is a linear scalar discrete equation
of k-th order

∆x(n) = −p(n)x(n− k), (1)

where p : Z∞a → (0,∞), k ≥ 1, a is an integer and n ∈ Z∞a . Let ϕ : Za
a−k → R. Together

with discrete equation (1), we consider an initial problem: determine a solution x = x(n) of
equation (1) satisfying the initial conditions

x(n) = ϕ(n), n ∈ Za
a−k (2)

with prescribed real constants ϕ(n).
A solution of initial problem (1), (2) is defined as an infinite sequence of numbers {xn}∞n=−k

with xn = x(a + n), i.e., {x−k = ϕ(a− k), . . . , x0 = ϕ(a), x1 = x(a + 1), . . . , xn = x(a + n), . . . }
such that, for any n ∈ Z∞a , equality (1) holds.

Solution of (1), (2) is called positive if x(n) > 0 for every n ∈ Z∞a−k. Solution of initial
problem (1), (2) is called oscillating on Z∞a−k if for arbitrary m ∈ Z∞a−k there exists n ≥ m such
that x(n)x(n + 1) ≤ 0.

We define auxiliary functions p, ν as
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and
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which play an important role in the investigation of positive and oscillating solutions of equa-
tion (1). We assume that n in (3) and (4) is sufficiently large for P (n) and Pθ(n) to be well
defined.

Theorem 1 If
p(n) ≤ P (n)

for all n ∈ Z∞m where m is sufficiently large, then exists a positive solution x = x(n), n ∈ Z∞m of
equation (1).

Theorem 2 If there exists a θ ∈ (1,∞) such that

p(n) > Pθ(n) (5)

for all n ∈ Z∞m where m is sufficiently large, then all solutions of (1) are oscillating on Z∞m .



The proof of Theorem 1 is based on a method developed in [2, 3, 5, 6]. The proof of Theorem 2
uses a method suggested in [9].
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[5] J. Dibĺık, Anti-Lyapunov method for systems of discrete equations, Nonlinear Anal., 57
(2004), 1043–1057.
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