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We repeat the fundamental concepts used in the given paper in introduction of this
abstract. After this we adduce the main results of the paper. Such

A hypergroupoid or a multigroupoid is a pair ( M, ∗) where M is a nonempty set
and ∗ : M × M → P∗(M) is a binary hyperoperation called also a multioperation.
(P∗(M) is the system of all nonempty subsets of M). A semihypergroup is an associative
hypergrupoid, i.e. hypergrupoid satisfying the equality (a ∗ b) ∗ c = a ∗ ( b ∗ c) for every
triad a, b, c ∈ M .

We denote by M a partially ordered set M with the ordering ≤ and with the greatest
element I which will be inscribed in the next part of this article with M = (M,≤, I)

We define for arbitrary x, y ∈ M on M = (M,≤, I) the binary hyperoperation ◦ as
follows:

x ◦ y = { min (X ∩ Y)}.
Where X = {mj | mj ∈ M, x ≤ mj} for all j from index set J and similarly the set
Y = {mk | mk ∈ M, y ≤ mk} for all k from index set K. We inscribe then the set M
with such defined binary operation with M = ( M ≤, ◦, I).

It is known that this hyperoperation of multiplication ◦ is idempotent and commutative
but not associative.[15]

The ordering of the carrier set M characterizes many properties of the hypergroupoid
M = ( M,≤, ◦, I). It is introduced teh interval bounded by the elements a, b ∈ M .
Hereafter a special ordered set is given:

Let (M,≤, ◦I) be a finite partly ordered multigroupoid satisfying the Jordan-Dedekind
chain condition where the relation of partly ordering is defined as follows: x ≤ y for all x
and y for which d(y) = d(x) − 1 and x ‖ y if d(x) = d(y). Hence x is in the relation ≤
with all its descendants.
Introduction of the conception of distinguishing is defined and various distinguishing
subsets on hypergoupoids are studied. The properties of distinguishing subsets on concrete
hypergroupoids are studied and some general theorems are given. The property β is
defined and on hypergroupids studied. Finally the weakly distinguishing and covering of
hypergoupoids are given and some general results are prooved.
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