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1 Introduction

The well-known and widely used model of predator-prey (or producer-consumer, host-parasite,
plant-herbivore, panda-bamboo etc.) interaction is the Gause-type one:

o' = aq(z) = Sp(x)y, Yy = —dy+ rSp(x)y,

where 2 = z(t) and y = y(t) denote a size (population density, biomass, number of individuals
etc.) of prey and predator populations, respectively, ¢ denotes prey growth rate in an envi-
ronment with absent predator (it can depend on size of prey population), d denotes constant
predator death rate, ¢ is the so called trophic function (rate of satiety of predator population
of unit size fed on prey population of size x in a unit time; 0 — predator is totally starving, 1 —
predator is totally saturated), S denotes the level of satiety of predator (the maximal possible
size of prey population destroyed by predator population of unit size in a unit time); conse-
quently, Sp(x) represent a size of prey population destroyed by a predator population of unit
size in unit time, x denotes efficiency of predation (fraction of destroyed prey population which
is transformed into growth of predator population).

The simplest forms of the prey growth rate function are the constant one: ¢(z) = r (the prey
population does not exhibit neither interspecific competition nor mutualism) and the linearly
decreasing (Verhulst) one: ¢(z) = r(1 — z/K) (the prey population exhibits an interspecific
competition in an environment with limited resources). Here r denotes an intrinsic growth rate
(maximal possible physiological growth rate of population) and K represents the capacity of
environment. The constant (i.e. density independent) growth rate can be considered to be a
special case of the linearly decreasing one (with K = 00); hence the function ¢ depends on two
parameters, q(x) = q(z;7, K).

The trophic function ¢ should have the following properties:

e (0) =0 (if none prey is available the predator starves),
e ¢ is nondecreasing function (if more prey is available the predator is not less satiated),

e lim =1 (one predator is able to destroy the prey population up to its saturation).
r—00

The widely used functions fulfilling the mentioned conditions are

s

ax
1+ axs
The both functions depend on two parameters, p(z) = ¢(x; s,a); in the both cases, the param-
eter s determines the shape of function (the function ¢ is concave downward if s < 1 and it is
s-shaped otherwise) and a is a kind of scale parameter characterizing “a speed of convergence”.

For details and qualitative analysis of the model see e.g. [3, pp. 100-119] or [1, pp. 60-64].

Now, the question arises: Is it possible to distinguish between different growth rate functions
and between different trophic functions on the base of field data (observed population densities
of prey and predator)? In another words, does field data enable us to identify “the true model”
of populations interaction?

o(z) =1 —exp(—azx?®) (the Ivlev type) and ¢(x) = (the Holling type),



2 Results

Having field data, say (to, Xo, Y0), (t1, X1,Y1),..., (tn, X5, Y,) (i.e. population densities of prey
X; and predator Y; at time instants ¢;, ¢ = 0,1,...,n), we can estimate the parameters of a
particular model (with definite prey growth rate and/or trophic function); two methods how to
do it are described in [2, pp. 12-18]. A goodness of fit can be measured by the euclidian distance
of theoretical trajectory (numerical solution of the ODE system with parameters obtained from

2
data) and measured values in logarithmic phase space, D = Z {(log m(t > (log %ﬁ”) ] (a

reasonable assumption is that the observed population densitles are log-normal random variables
and the solutions of the ODE system are their mean values).

Three types of data were simulated — 1. growth rate with K = oo, ¢ of the Ivlev type, 2.
growth rate with K < oo, ¢ of the Ivlev type 3. growth rate with K = oo, ¢ of the Holling type
— and sixty “perturbed” data sets were generated (samples of log-normal distribution with the
mean value equal to the simulated one and with the coefficient of variation equal to 0.1) three
times. For each of the data set, the parameters of model with the genuine and the alternative
growth rate or trophic function were estimated and the goodness of fit D was evaluated.

The obtained results are summarized on the table 1. They show, that there is not significant
difference in goodness of fit for the right model and for the alternative one. Consequently, neither
type of prey growth rate nor type of trophic function can be identified from field data. But the
substantial qualitative property of the model (stability of the population steady state) can be
established independently on the fact whether the selected model was true or wrong.

Estimated model
K = o0, ¢ Holling | K = o0, p Ivlev | K < o0, ¢ Ivlev
K = oo, 10.797,0.361,8.251} | {1.003,0.440, 6.762}
s ¢ Holling 100% 100%
%8| K=o, {1.046,0.429,9.820} | {1.135,0.378,3.302} | {1.442,0.528,4.621}
23 | plvley 100% 96% 100%
& K < oo, {1.352,0.826,4.217} | {1.990,0.761, 12.18}
o Ivlev 100% 100%

Table 1: Distance of simulated and estimated trajectories (in the form {median, min, max})

and relative success in establishing stability of equilibrium

Acknowledgment. This research was supported by the grant of the Czech Grant Agency, Reg.

No. GA201/07/0145.

References

[1] N. F. Britton. Essential Mathematical Biology. Springer, London-Berlin-Heidelberg-New

York-Hong Kong-Milan-Paris-Tokyo, 2003.

[2] Z. Pospisil. Diferencidlni rovnice v biologii a mediciné. Védecké spisy VUT v Brné, Edice

Habilitaéni a inauguracni spisy, 204, 2006.

[3] FO. M. Ceupexes, 1. O. Jloroder. Yemouwusocmo 6uosoeuueckuy coobwecms. Hayxka,

Mocksa, 1978.




