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Abstract

Boundary elements method is well-suited for computational acoustics. The main profit
it brings is reduction in number of unknowns compared to FEM. However, application of
BEM to sound scattering problems has shown, that this advantage is lost in case of high
frequency waves. High frequencies require larger number of elements which contradicts the
initial purpose of using BEM in solvers and may even result in situations, where solution
does not exist for some exterior problems. A special choice of basis functions of exponential
type can help to reduce computational cost for high wave numbers. The standard boundary
integral formulation can further be improved using Burton-Miller scheme to avoid problems
with existence of solution.

1 Helmholtz Boundary Equation

Space-dependent part of time-harmonic acoustic wave is described by Helmholtz equation

∆u + k2u = 0 k =
ω

v

(ω being frequency and v speed of sound in given media). Domain of solution is either interior
or exterior of some closed curve (boundary) representing submerged obstacle in 2D. In case of
the exterior problem an extra condition must be added to the condition on the body boundary,
and it is so called Sommerfeld radiation condition, which ensures the uniqueness of solution to
the scattering problem

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0, r = |x|.

Applying the second Green’s theorem to the problem as stated above we come to the boundary
integral form of the Helmholtz equation valid in the interior and the exterior respectively

u(x) =
∫

Γ

(
∂u

∂νy
(y)φ(x, y)− u(y)

∂φ(x, y)
∂νy

)
ds(y) for x ∈ Ω,

and

u(x) =
∫

Γ

(
u(y)

∂φ(x, y)
∂νy

− ∂u

∂νy
(y)φ(x, y)

)
ds(y) for x ∈ Rn \ Ω̄,



ν being in both cases the unit normal vector to the boundary pointing into the exterior, φ(x, y)
stands for the fundamental solution (actual form differs in R2 for R3). For the limit case of
x ∈ ∂Ω similar equation holds, namely

∫
Γ

u(y)
∂φ(x, y)

∂νy
ds(y)− cu(x) =

∫
Γ

∂u

∂νy
(y)φ(x, y)ds(y).

Both Dirichlet or Neumann boundary value problem can be formulated. The problem of greatest
interest is a Dirichlet problem with plane wave u = Ae−ikdx, where d stands for direction, as
the incident field. It represents sound-scattering of acoustic waves with applications in sonars or
industrial noise reduction. Since we only study two-dimensional cases, the fundamental solution
will take form

φ(x, y) =
i

4
H1

0 (kr).

Parameter c is very often given as a constant of value 0.5. In fact, this only holds for C1 smooth
boundaries, [?]. For boundaries with corners, c is a function of the interior angle at a given
point

c =
θ

2π
.

Collocation or Galerkin methods can be used for discretization of the boundary integral form
of Helmholtz equation. We choose collocation since it is simple to apply. Discretizing boundary
into N elements we get

N∑
j=1

∫
Γi

u(y)
∂φ(xi, y)

∂νy
ds(y) = ciu(xi) +

N∑
j=1

∫
Γi

∂u

∂νy
(y)φ(xi, y)ds(y).

Using polynomial (constant, piece-wise linear, quadratic) basis functions for approximation of u
or ∂u

∂νy
we obtain system of linear equations for the unknown values at nodes xi. However, with

increasing frequency of the incident wave the number of elements grows fast and the reliability of
solution drops. Therefore, special basis functions in the form p(x)e−ikdx, where p is polynomial,
have been suggested, [?],[?]. In theory, adoption of such basis functions should lead to drastic
decrease of the number of elements needed, which is our goal to prove or reject.

2 Numerical Results

So far we have developed solver implementing collocation method for discretization of the bound-
ary integral, using standard 1st and 2nd order polynomial basis functions. Collocation method
suitably handles some computational aspects, namely the integration of singular Hankel func-
tions. Galerkin approach does not seem to give substantialy better results, while it is more
expensive due to the need of numerical evaluation of double integrals (again with singular ker-
nels). Numerical solution is presented for exterior problem with constant boundary condition.



Figure 1: Constant boundary condition - real part of solution.

Figure 2: Constant boundary condition - imaginary part of solution.



3 Burton-Miller Method

Numerical experiments have shown, that the standard approach to solution described above only
gives reliable results for limited range of wave numbers, approximately up to kD < 4, where
D stands for characteristic dimension of the body, [?]. Therefore, effort has been devoted to
development of improved methods which would allow to overcome this major drawback. The
most promising appears to be Burton-Miller scheme with hybrid equation

∫
Γ

u(y)
∂φ(x, y)

∂νy
ds(y)− cu(x) + µ

∂

∂νx

∫
Γ

u(y)
∂φ(x, y)

∂νy
ds(y) =

=
∫

Γ

∂u

∂νy
(y)φ(x, y)ds(y) + µ

∂

∂νx

∫
Γ

∂u

∂νy
(y)φ(x, y)ds(y) + c

∂u

∂νy
(y) for x ∈ Γ.

While majority of the calculation steps remain the same, the difficulty of solving Burton-Miller
problem lays in the numerical evaluation of ∂

∂νx

∫
Γ u(y)∂φ(x,y)

∂νy
ds(y), for which a special procedure

must be developed.

4 Conclusions

It turns out that for effective solution of the whole range of interior and exterior problems with
arbitrary frequencies the improved Burton-Miller scheme has to be implemented into the solver.
This should further by supplemented by adoption of exponential basis functions to obtain high
rates of convergence for the practically relevant cases of plane waves as the incident fields. This
is the goal of our future work.
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