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Abstract

The paper gives an overview of methods of the analysis of gray-scaled photographi-
cal images for circular domains, motivated by the need of sufficiently precise and cheap
monitoring of displacements of parts of building constructions in time. The overview of
methods applied in the literature is followed by the geometrical analysis of the projection
of a planar circle to plane of the snapshot. Several algorithms, based on the numerical
analysis of partial differential equations, adopted to this problem, are presented together
with the analysis of their properties.

1 Introduction

The analysis of gray-scaled photographical images for circular domains is a serious problem in
image processing, namely in applications in astronomy, physics, biology, quality control and
metrology, etc. A photographical image of a circle, located in a real plane, as a result of central
projection to an other real plane, may be a real two-dimensional quadric (ellipse, hyperbola
or parabola, in degenerated cases alternatively some linear set), for good-arranged experiment
typically an ellipse, in general with the centre that does not coincide with the image of the
original centre of a circle.

Such preliminary sketched problem can be studied using the general theory of pattern
recognition. Since we are sure (unlike military applications where nobody can know a priori
whether the objects on a real-time image correspond to a geese gaggle or to enemy’s bombs)
that we are reconstructing a circle, we are allowed to switch to special methods and algorithms
for ellipse detection, ignoring other shapes. The number of references only partially documents
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a great number of activities in this research field in the last two decades. Thus it is useful
to remind at least their principal directions and approaches. In our rough classification the
criterion of mathematical basis will be dominant. However, a lot of other criteria is possible:
some methods prefer robustness, other methods computational efficiency, including either low
CPU time (which is important namely in real-time applications) or small memory requirements
or make use of possibilities of parallel computing, etc.; the result is every time some compromise.

The discussed methods can be divided into two big groups:

1) optimization,

2) voting/clustering.

The characteristic property of methods from the group 1) is that some kind of minimization
in some norm or real couples, typically expressing the distance between the points on a boundary
curve (that should be an ellipse here) and the measured and pre-processed data; in general a
resulting ellipse does contain no given data exactly. Such methods can be relatively simple only
if the image is a circle (which is given by 2 parameters only), too. Since the complete description
an ellipse needs 5 parameters, in all other cases they are rather complicated; moreover, their
quality depends strongly on the good detection of a boundary curve from the noised two-
dimensional finite map of gray-scaled pixels (alternatively transformed from the red/green/blue
color representation). This gives serious arguments for the development of methods of the group
2), based on some advanced suboptimal algorithms of choice of “correct data” to determine an
ellipse, usually in less expensive way. In some more details, the group 1) contains namely

a) least squares fitting,

b) moment of inertia optimization,

c) genetic algorithms,

whereas the group 2) incorporates

d) Huge transform,

e) random sample consensus,

f) algorithms based of fuzzy logic,

g) algorithms based on competitive learning.

Most methods from the literature belonging to the group 1) can be classified as a). Nev-
ertheless, the formal algebraic fitting from the seemingly linear least squares method (LSM),
based on the determination of 5 real parameters A,B,C,D,E in the general equation of a plane
quadric

Ax2 +Bxy + Cy2 +Dx+ Ey + 1 = 0

from a lot of pre-processed n discrete couples (xi, yi), i ∈ {1, . . . , n}, of Cartesian coordinates
(x, y) in the two-dimensional Euclidean space, is rarely applied because of the difficulties with
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the realistic error evaluation; nearly all algorithms, as [35] or [13], come from deeper geometrical
considerations. The theory of non-linear least squares fitting of an ellipse is summarized in [1]:
the cost function is the sum the second powers of distances (Euclidean norms of differences)
between all couples (xi, yi) and corresponding couples (x̂i, ŷi), obtained in each iteration step of
the generalized Newton method for 5 unknown parameters by orthogonal projection of (xi, yi)
onto an ellipse. The unpleasant difficulties come already in the setting of calculation of (xi, yi):
for an arbitrary couple (xi, yi) there are 4 possibilities how to construct (x̂i, ŷi); this corresponds
with the formulation of certain algebraic equation of order 4, solvable exactly by the general
Cardan formulae (which would lead to a very complicated algorithm – cf. [27], p. 69), by the
auxiliary Newton iteration for such algebraic equation (which is unstable by experience here) or
for 2 algebraic equations of order 2 (with better stability results). Let us notice that the argu-
ments from the classical projective geometry, presented in [21], p. 55, justify that much better
results cannot be expected: all 4 alternatives of choice (x̂i, ŷi) characterize the intersections of
the so-called Apollonius hyperbola with both axes parallel to corresponding axes of an ellipse,
thus in generalized polar coordinates with a planar angle ϕ, 0 ≤ ϕ < 2π, the evaluation of
(x̂i, ŷi) lead to the calculation of corresponding ϕ from an algebraic equation of order 4 again.
However, the (not quite simple) constructive geometrical algorithm by [21], pp. 45 and 55, is
available.

The above sketched difficulties motivates the derivation of still other method, based of some
kind of optimization; some of them cannot be interpreted as certain version of LSM only. This
is true e. g. for [6] with its optimization of certain moment of inertia, mentioned as b) here, and
also for the application of the theory of genetic algorithms, mentioned as c), derived in [34].

In the group 2) the most frequent approaches belong to d). The theory of the Huge transform
(HT) is more than 40 years old and dates back to the US Patent [19]. As a major advantage of
HT its insensitivity to imperfect data is appreciated. However, for detecting elliptic shape HT
needs 5 real parameters again: usually the center (ξ, η) (2 real numbers), the semiaxes (ξ̄, η̄) (2
positive numbers) and the orientation angle ϑ, 0 ≤ ϑ < 2π. Various versions, extensions and
improvements of HT differs in concrete implementations of its 3 principal steps:

• applying some smoothing mask, usually based on some Gaussian-like convolutions as on
semi-Gaussian ones in sense of [38] or on Gaussian convolutions (including derivatives)
combined with Hermite integration by [28],

• calculating the edge strength (if possible, with subpixel precision), alternatively also the
direction (or convexity, curvature, etc.) at each pixel,

• locating the final edge, based on the voting for parameter values in accumulator arrays
and on their best estimation.

From the extensive literature we can mention only several items. Among the variants of HT, the
so-called fast Hough transform (FHT), designed in [24], became popular for its computational
efficiency. In [35] an ellipse is constructed from 5 points, using certain symmetry in subimages.
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In [18] an ellipse is generated from its center, obtained by the intersection of curves from two
arrays of midpoints of the pairs of edge points in the same horizontal and vertical position. The
way how to obtain edge tangent information is described in [2]; nevertheless, up to now, some
authors avoid such tricks completely, as in practice the setting of tangents may be imperfect
due to the noise working conditions. The contribution of [23] is in an original efficient setting of
symmetrical axes of an ellipse from its symmetric contours. In [33] the detection of the major
axis in the outer calculation cycle is preferred, the minor axis is then estimated in the inner cycle
(without any tangent information). Further algorithms refer to some properties of an ellipse,
known from the descriptive geometry, namely that the line going through the intersection of
2 tangents constructed in 2 points of an ellipse and through the central point on the line
connecting such two points contains the centre of an ellipse; certain variant of FHT, called
(by the authors) the fast ellipse Hough transform (FEHT), making use of such considerations,
is developed in [16]. Following FEHT, in [38] the original robust and fast software code for
real-time application, denoted as the real-time ellipse Huge transform (RTEHT), has been
presented.

Regardless to the quantity and quality of algorithms d), their certain alternatives e) should
not be quite neglected. The idea of random simple consensus (RANSAC) with its special voting
scheme was originally formulated in [12]. In [7] RANSAC was improved by some acceleration
techniques (and presented as K-RANSAC). The contemporary RANSAC-like methods can be
represented by the edge-projected integration of cues (EPIC), described in details in [30]. Only a
minority of methods from the group 2) cannot be classified neither as HT-like nor as RANSAC-
like approaches. In the case e) they are produced by specialists in fuzzy sets – cf. [9], in the
case f) by specialists in neural networks and their applications to competitive learning – cf. [37]
(although both authors are active also in HT research).

An important part of the correct ellipse detection, needed in both groups 1) and 2), is
the good choice of approximating points from a gray-scaled two-dimensional map, consisting
of a finite number of rectangles with constant intensities between black and white. Quick
(especially real-time) applications make use of some intuitive searching for maximal derivatives,
as the convexity matching scheme in 8 equal planar sections in [37], p. 276, preceded by certain
discretized version of Gaussian smoothing. Better approximations may be exploited using the
methods of numerical solution of partial differential equations of evolution, namely a nonlinear
diffusion equation of Perona-Malik type. Much more information to such methods can be found
in [10] and [32]; the complete theory, including existence and uniqueness results, coming from
the properties of Rothe sequences, is presented in [20]. From our field of interest namely the
development of geodesic active contours, sketched in [32], p. 45 (including an original numerical
approximation, based on certain finite difference scheme with harmonic averaging), theoretically
analyzed in [4], should be applicable, e. g. as an efficient pre-processing to a).
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2 Least squares technique in central projection of a cir-

cle

The following analysis is motivated by the fact that, unlike most cited references, we are sure
that our ellipse is an image of a circle; The main aim is to find the position of its center from
such image with subpixel precision; the speed of calculation (as in real-time applications) is
not the decisive criterion. We intend to derive a method based on least squares technique, but
without tough repeated calculations of distances between detected points and some (quasi)ideal
ellipse.

Let us now study the reconstruction of the position of a real circle from its photographical
image in the Euclidean space with the Cartesian coordinates (x, y, z). We shall start with the
formulation of 3 parametric equations of a circle ω with a center S = (x0, y0, z0) and a radius
r in certain plane $

a(x− x0) + b(y − y0) + c(z − z0) = 0 , (1)

defined (up to a multiplicative factor) by its normal (a, b, c); a, b and c are real parameters, at
least one must be non-zero. Without loss of generality we are allowed to consider the projection
from the centre P = (0, 0,−ζ) (a non-zero real parameter ζ is set by the camera), onto the
plane $̃, characterized by z = 0; the image of ω is an ellipse ω̃. We do not admit P contained
in $, thus we must suppose by (1)

ax0 + by0 + c(z0 + ζ) 6= 0 .

In such geometrical configuration ω lies in the intersection of a sphere

x = x0 + r sinψ cosϕ , y = y0 + r sinψ sinϕ , z = z0 + r cosψ

with variable angles 0 ≤ ϕ < 2π and 0 ≤ ψ ≤ π and of a plane defined by (1). Let us remark
that such parameterization is not suitable for c = 0; however, this case with $ perpendicular
to $̃ is of low practical importance (we strive to preserve rather small angle between $ and
$̃), thus the derivation of analogous equations with another parameterization can be left to
the inquisitive reader. For simplicity (to avoid other possible degenerations with our camera
close to ω) we shall also assume z0 + ζ > r. Thus we have

ar sinψ cosϕ+ br sinψ sinϕ+ cr cosψ = 0

and consequently

sinψ =
c√

(a cosϕ+ b sinϕ)2 + c2
, cosψ = − a cosψ + b sinψ√

(a cosϕ+ b sinϕ)2 + c2
.
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The resulting equations of ω are

x=x0 +
rc cosϕ√

(a cosϕ+ b sinϕ)2 + c2
,

y= y0 +
rc sinϕ√

(a cosϕ+ b sinϕ)2 + c2
, (2)

z= z0 −
r(a cosϕ+ b sinϕ)√

(a cosϕ+ b sinϕ)2 + c2
.

Without loss of generality we are allowed to consider the projection from the centre P =
(0, 0,−ζ) (the positive parameter ζ is set by the camera), onto the plane $̃, characterized by
z = 0; the image of ω is an ellipse ω̃; Using (2), we can see that the equations of all surface
lines of a cone containing ω and going through S and through some point of ω are

x=

x0 +
rc cosϕ√

(a cosϕ+ b sinϕ)2 + c2

 t ,
y=

y0 +
rc sinϕ√

(a cosϕ+ b sinϕ)2 + c2

 t ,
z=−ζ +

z0 + ζ − r(a cosϕ+ b sinϕ)√
(a cosϕ+ b sinϕ)2 + c2

 t
for an arbitrary real parameter t. Their intersection with the projection plane z = 0 corresponds
to

t = ζ

z0 + ζ − r(a cosϕ+ b sinϕ)√
(a cosϕ+ b sinϕ)2 + c2

−1

.

This generates the equations of ω̃

x=
ζ
(
x0

√
(a cosϕ+ b sinϕ)2 + c2 + rc cosϕ

)
(z0 + ζ)

√
(a cosϕ+ b sinϕ)2 + c2 − r(a cosϕ+ b sinϕ)

,

y=
ζ
(
y0

√
(a cosϕ+ b sinϕ)2 + c2 + rc sinϕ

)
(z0 + ζ)

√
(a cosϕ+ b sinϕ)2 + c2 − r(a cosϕ+ b sinϕ)

, (3)

z= 0 ;

ϕ is still a variable angle. The coordinates of the image S̃ = (x̃0, ỹ0, 0) of S are

x̃0 =
ζx0

z0 + ζ
, ỹ0 =

ζy0

z0 + ζ
;
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this can be verified easily from (3) for r → 0.

Let us notice some special cases. We have excluded $̃ perpendicular to $, corresponding
to c = 0. If, in particular, $̃ is parallel to $ then a = b = 0 and (3) degenerate to

x =
ζ(x0 + r cosϕ)

z0 + ζ
, y =

ζ(y0 + r sinϕ)

z0 + ζ
, z = 0 .

It is evident that ω̃ here is a circle again (not a general ellipse); however, this cannot be arranged
usually in practice. The (perhaps more realistic) choice a = 0 6= b or b = 0 6= a does not bring
substantial simplifications; the corresponding equations can be easily rewritten from (3).

Let us also remark that the relations between ω and ω̃ can be alternatively studied by means
of the classical descriptive geometry, applying the theory of central projection and fotogram-
metry. Much more information can be found in [22], p. 91, but the discussed constructive
approaches (as searching for intersections of couples of tangents to an ellipse ω̃ and solving
a corresponding inverse problem) do not allow a sufficiently simple and transparent algebraic
description, needed in our considerations; Nevertheless, such approaches could be helpful to
construct (using a ruler and a drawing compass only) the first rough approximation of the loca-
tion of ω from ω̃ if no better information is available for the subsequent algebraic improvement.

Let us come back to (3) with c = 1 (if c 6= 0, this can be assumed with no loss of generality);
let us introduce the brief notation

ρ =
r

z0 + ζ
, Φ(a, b, ϕ) =

1√
(a cosϕ+ b sinϕ)2 + 1

.

Then (3) obtain the seemingly simple form

x =
x̃0 + ρΦ cosϕ

1− ρΦ(a cosϕ+ b sinϕ)
, y =

ỹ0 + ρΦ sinϕ

1− ρΦ(a cosϕ+ b sinϕ)
(4)

(the third equation is not needed). Let us believe that we know r (diameter of ω) and ζ
(camera characteristic) exactly. For some fixed parameters a, b (global position of $), x̃0, ỹ0

and ρ (location of ω in $, or ω̃ in $̃, respectively) we need to determine ϕ from x and/or y.
We shall assume that we have (as the result of some pre-processing procedure) a finite number
n couples of inexact coordinates (xi, yi), i ∈ {1, . . . , n}, of points of ω̃. Then for any such i the
best way for setting corresponding angle ϕi should be to minimize the function of one variable

f(ϕi) =
1

2
(γxi − xi)

2 +
1

2
(γyi − yi)

2

where

γxi =
ψxi

κi

, γyi =
ψxi

κi

,
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using the brief notation

ψxi = x̃0 + ρΦi cosϕi , ψyi = ỹ0 + ρΦi sinϕi ,

κi = 1− ρΦi(a cosϕi + b sinϕi)

with Φi substituting Φ(a, b, ϕi). This can be done numerically, using the standard Newton
method: if the prime symbol denotes the the derivative by ϕi then we receive the iterative
algorithm

ϕi ← ϕi − f ′(ϕi)/f
′′(ϕi) (5)

where

f ′(ϕi) = (γxi − xi)γ
′
xi + (γyi − yi)γ

′
yi ,

f ′′(ϕi) = (γxi − xi)γ
′′
xi + (γyi − yi)γ

′′
yi + γ′2xi + γ′2yi ;

the (rather long) evaluation formulae for the first and second order derivatives of γxi and γyi

can be generated e. g. with help of the MATLAB toolbox “symbolic” directly to the MATLAB
program code with the following result (presented here after small formal modifications):

γ′xi =
ψ′

xiκi − ψxiκ
′
i

κ2
i

,

γ′yi =
ψ′

yiκi − ψyiκ
′
i

κ2
i

,

γ′′xi =
ψ′′

xiκ
2
i + ψxi(2κ

′2
i − κiκ

′′
i ) + 2ψxiκ

′2
i

κ4
i

,

γ′′yi =
ψ′′

yiκ
2
i + ψyi(2κ

′2
i − κiκ

′′
i ) + 2ψyiκ

′2
i

κ4
i

;

here the first and second derivatives of Φi

Φ′
i = Φ3

i (a cosϕi + b sinϕi)(a sinϕi − b cosϕi) ,

Φ′′
i = Φ3

i

(
(a cosϕi + b sinϕi)

2 − (a sinϕi − b cosϕi)
2
)

− 3Φ5
i (a cosϕi + b sinϕi)

2(a sinϕi + b cosϕi)
2

and of other auxiliary functions

ψ′
xi=ρ(−Φi sinϕi + Φ′

i cosϕi) ,

ψ′
yi=ρ(Φi cosϕi + Φ′

i sinϕi) ,

κ′i=−ρ (Φ′(a cosϕ+ b sinϕ) + Φi(−a sinϕ+ b cosϕ)) ,

ψ′′
xi=ρ(−Φi cosϕi − 2Φ′

i sinϕi + Φ′′
i cosϕi) ,

ψ′′
yi=ρ(−Φi sinϕi + 2Φ′

i cosϕi + Φ′′
i sinϕi) ,

κ′′i =−ρ (Φ′′
i (−a cosϕ+ b sinϕ) + 2Φ′

i(−a sinϕ+ b cosϕ)− Φi(a cosϕi + b sinϕi))
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are needed. The algorithm (5) must be applied n-times (for all pre-processed points), but all
calculations can be parallelized (which can be also MATLAB-supported).

Unfortunately, it is not realistic to know 5 parameters a, b, x̃0, ỹ0 and ρ in advance. Thus
we have to minimize the function of 5 variables

F (a, b, x̃0, ỹ0, ρ) =
1

2

n∑
i=1

(γxi − xi)
2 +

1

2

n∑
i=1

(γyi − yi)
2

where γxi and γyi (introduced above) are considered as functions of a, b, x̃0, ỹ0 and ρ now. We
can apply the Newton iterative algorithm again (for a function of 5 variables, but only once)
in the form 

a
b
x̃0

ỹ0

ρ

←

a
b
x̃0

ỹ0

ρ

−M
−1


∂F/∂a
∂F/∂b
∂F/∂x̃0

∂F/∂ỹ0

∂F/∂ρ

 (6)

with

M =


∂2F/∂a2 ∂2F/∂a∂b ∂2F/∂a∂x̃0 ∂2F/∂a∂ỹ0 ∂2F/∂a∂ρ
∂2F/∂a∂b ∂2F/∂b2 ∂2F/∂b∂x̃0 ∂2F/∂b∂ỹ0 ∂2F/∂b∂ρ
∂2F/∂a∂x̃0 ∂2F/∂b∂x̃0 ∂2F/∂x̃2

0 ∂2F/∂x̃0∂ỹ0 ∂2F/∂x̃0∂ρ
∂2F/∂a∂ỹ0 ∂2F/∂b∂ỹ0 ∂2F/∂x̃0∂ỹ0 ∂2F/∂ỹ2

0 ∂2F/∂ỹ0∂ρ
∂2F/∂a∂ρ ∂2F/∂b∂ρ ∂2F/∂x̃0∂ρ ∂2F/∂ỹ0∂ρ ∂2F/∂ρ2


(F and its partial derivatives depend still on 5 variables, but this is not emphasized explic-
itly here). To get some partial derivatives of F is simple, namely those by x̃0 and ỹ0; even
∂2F/∂x̃0∂ỹ0 = 0. Their complete set can be evaluated using the scheme (similar to that in the
minimization of f)

∂F/∂u=
n∑

i=1

(γxi − xi)∂γxi/∂u+
n∑

i=1

(γyi − yi)∂γyi/∂u ,

∂2F/∂u∂v=
n∑

i=1

(γxi − xi)∂
2γxi/∂u∂v +

n∑
i=1

(γyi − yi)∂
2γyi/∂u∂v

+
n∑

i=1

∂γxi/∂u ∂γxi/∂v +
n∑

i=1

∂γyi/∂u ∂γyi/∂v

where u, v ∈ {a, b, x̃0, ỹ0, ρ} and the formal differentiation of γxi and γyi is allowed to be
MATLAB-supported again. We obtain

∂γxi/∂u=
∂ψxi/∂u κi − ψxi∂κi/∂u

κ2
i

,

∂γyi/∂u=
∂ψyi/∂u κi − ψyi∂κi/∂u

κ2
i

,
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∂2γxi/∂u∂v=
∂2ψxi/∂u∂v κ

2
i + ψxi(2∂κi/∂u ∂κi/∂v − κi∂

2κi/∂u∂v)

κ4
i

+
2ψyi(∂κi/∂uv)

2

κ4
i

,

∂2γyi/∂u∂v=
∂2ψyi/∂u∂v κ

2
i + ψyi(2∂κi/∂u ∂κi/∂v − κi∂

2κi/∂u∂v)

κ4
i

+
2ψyi(∂κi/∂uv)

2

κ4
i

with the first derivatives

∂ψxi/∂a = ρ∂Φi/∂a cosϕi , ∂ψyi/∂a = ρ∂Φi/∂a sinϕi ,
∂ψxi/∂ỹ0 = ∂ψxi/∂x̃0 − 1 = 0 , ∂ψyi/∂x̃0 = ∂ψyi/∂ỹ0 − 1 = 0 ,
∂ψxi/∂ρ = Φi cosϕi , ∂ψyi/∂ρ = Φi sinϕi ,

∂κi/∂a=−ρ (∂Φi/∂a(a cosϕi + b sinϕi)− Φi cosϕi) ,

∂κi/∂b=−ρ (∂Φi/∂b(a cosϕi + b sinϕi)− Φi sinϕi) ,

∂κi/∂ρ= Φi(a cosϕi + b sinϕi) , ∂κi/∂x̃0 = ∂κi/∂ỹ0 = 0 ,

∂Φi/∂a = −Φ3
i cosϕi , ∂Φi/∂b = −Φ3

i sinϕi

and with the non-zero second ones for arbitrary u, v ∈ {a, b}

∂2ψxi/∂u∂v= ρ∂2Φi/∂u∂v cosϕi , ∂2ψyi/∂u∂v= ρ∂2Φi/∂u∂v sinϕi ,
∂2ψxi/∂u∂ρ= ∂Φi/∂ρ cosϕi , ∂2ψyi/∂u∂ρ= ∂Φi/∂ρ sinϕi ,

∂2κi/∂a
2 = −ρ∂2Φi/∂a

2(a cosϕi + b sinϕi)− 2ρ∂Φi/∂a cosϕi ,

∂2κi/∂b
2 = −ρ∂2Φi/∂a∂b(a cosϕi + b sinϕi)− 2ρ∂Φi/∂b sinϕi ,

∂2κi/∂a∂b = −ρ∂2Φi/∂a∂b(a cosϕi + b sinϕi)

−ρ (∂Φi/∂a sinϕi + ∂Φi/∂b cosϕi) ,

∂2κi/∂a∂ρ = ∂Φi/∂a(a cosϕi + b sinϕi) + Φ cosϕi ,

∂2κi/∂b∂ρ = ∂Φi/∂b(a cosϕi + b sinϕi) + Φ sinϕi ,

∂2Φi/∂a
2 = 3Φ5

i cos2ϕi , ∂2Φi/∂b
2 = 3Φ5

i sin2ϕi , ∂2Φi/∂a∂b =
3

2
Φ5

i sin(2ϕi) .

In practical calculation the evaluation of M−1 in (6) can be avoided e. g. by the Gauss elimi-
nation scheme.

In most technical applications with repeated reconstructions of ω (a series of images with
time-dependent positions of ω is available) the algorithm (6) can be simplified dramatically.
Namely if we are sure that ω is still moving in $ then a and b can be set in the first calcu-
lation and in subsequent calculations F depends only on 3 variables. The importance of the
quality of the first estimate of all 5 parameters may be more clear from an intuitive geometrical
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consideration (which could be verified by proper analytical computations or using constructive
arguments from [22], p. 99): a cone given by P and ω̃ has 2 systems of circular cuts by parallel
planes (that coincide only for a rotational cone), thus 4 circles with the given radius r belong to
such system, among them 2 violating the orientation of the projection from P , but remaining
2 to be distinguished.

3 Data smoothing and contour detection

The previous section needs n data couples (xi, yi), thus the quality of the result is conditioned
by the quality of their recognition from the finite gray-scale map, produced by our camera.
Because of the presence of noise some smoothing is needed, then the points approximating an
ellipse can be detected. We shall see that we can apply certain least squares access again.

Let w(x, y) be a smooth map of gray intensities (its smoothness can be analyzed more
precisely in terms of Lebesgue, Sobolev and Bochner spaces of integrable functions – see [32],
p. 46), received from our gray-scale data g(x, y), assigned to particular rectangular pixels; all
such pixels create a rectangular domain Ω. Its subpixel precision can be based on the following
considerations. By [32], p. 45, w(x, y) is analyzed numerically as a solution w(x, y, τ) of one
partial differential equation of evolution in time τ > 0

ẇ = |∇w| div

(
g
∇w
|∇w|

)
(7)

with ẇ defined as ∂w/∂τ , although its transparent derivation from some integral version of
the least squares access, similar to that from classical diffusion problems in computer vision,
sketched in [32], p. 41, is not available. The evolution is starting at zero time t = 0 from
some prescribed initial estimate w(x, y, 0); then w(x, y) is taken as such “stationary status”
w(x, y, τ) when all substantial changes of w in τ vanish. This approach coincides with the
study of the parabolic problem of mean curvature motion by [10], p. 17; some its modifications
and generalizations are mentioned in [5], p. 267.

An unpleasant imperfection of (7) is that g(x, y) is a simple function, in practice discon-
tinuous on most pixel edges. Thus it is needed, following [32], p. 45, to substitute such g by
certain function g(|∇Sε ∗ g|) (independent of w); here ∗ denotes the convolution and Sε is some
smoothing function with a positive parameter ε, set by experience. In [32], p. 35, the Gaussian
smoothing Sε(x, y) = δε(

√
x2 + y2) with

δε(s) =
1

2πε2
exp

(
− s2

2ε2

)
(8)

is recommended and the “diffusivity” function g is defined as

g(s) = 1− exp

(
−υλ

4

s4

)
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for s > 0, otherwise (for s = 0) to g(s) = 1; λ is some positive contrast characteristic (e. g. in
[32], p. 46, ε = 1 and λ = 5). The remaining positive characteristic ξ must be received from
some additional requirement, e. g. that the flux sg(s) is increasing for s < λ and decreasing for
s > λ; the elementary differential calculus gives then the condition exp(υ) = 1 + 8υ, satisfied
for υ ≈ 3.31487736178606.

The algorithm of [32] searches for the best contours of certain domain Θ (approximating
ω̃ in our notation) in Ω from its exterior, consisting of some “nearly-black” or “nearly-white”
noise of some average intensity c2 between 0 and 1; moreover, a sufficient number of coordinate
couples (xi, yi) of ∂Θ must be found a posteriori. However, we know that in our problem also
the interior of Θ should consist of some similar noise, only of another intensity c1 between 0 and
1. To incorporate this information, let us follow the main ideas of [5]. The crucial problem is
always to localize ∂Θ; for a sufficient number of its points all algorithms of the previous section
are applicable.

Let µ be the standard 2-dimensional Lebesgue measure on Ω, thus dµ = dx dy. Let λ and
λ̂ be 2 prescribed positive constants. Let us try to minimize the real functional

G(c1, c2, φ) =λ
∫
Ω
δ(φ)|∇φ| dµ

+ λ̂
∫
Ω

(g − c1)2H(φ) dµ+ λ̂
∫
Ω

(g − c2)2(1−H(φ)) dµ (9)

where H denotes the Heaviside function and δ the Dirac measure (which is the derivative of
H is sense of distributions); the third variable φ(x, y) is certain “level-set” function with zero
values on ∂Θ, positive values on Θ, otherwise with negative values on Ω, Lebesgue integrable
including its gradient on Ω. Evidently the problem of localization of Θ coincides with the
analysis of zero points of φ. For a fixed φ clearly G can be identified with a real function of 2
variables only, whose differentiation by c1 and c2 gives

∂G/∂c1(c1, c2) = 2λ̂
∫
Ω

(c1 − g)H(φ) dµ ,

∂G/∂c2(c1, c2) = 2λ̂
∫
Ω

(c2 − g)(1−H(φ)) dµ

and its minimum is attached for

c1 =
(∫

Ω
H(φ) dµ

)−1 ∫
Ω
gH(φ) dµ ,

c2 =
(∫

Ω
(1−H(φ)) dµ

)−1 ∫
Ω
g(1−H(φ)) dµ . (10)

This result has a simple geometric interpretation: c1 and c2 are the averages of g on Θ and
Ω \Θ \ ∂Θ. Nevertheless, in general we must respect that both c1 and c2 depend on φ; later in
practical calculations some formula for numerical integration (e. g. the rectangular rule) cannot
be avoided.
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The differentiation of G with respect to φ is more delicate For both fixed c1 and c2 it is a
real functional on a set of all admissible φ, clearly with δ(φ) unchanged. Therefore its Gâteaux
differential (in sense of [14], p. 89) with any variation φ̃, Lebesgue integrable and bounded
including its gradient on Ω, is

DG(φ, φ̃) =λ
d

dt

(∫
Ω
δ(φ)

√
(∇φ+ t∇φ̃) · (∇φ+ t∇φ̃) dµ

)
t=0

+ λ̂
d

dt

(∫
Ω

(g − c1)2H(φ+ tφ̃) dµ
)

t=0

+ λ̂
d

dt

(∫
Ω

(g − c2)2(1−H(φ+ tφ̃)) dµ
)

t=0

=λ
∫
Ω
δ(φ)
∇φ̃ · ∇φ
|∇φ|

dµ

+ λ̂
∫
Ω
φ̃ δ(φ)(g − c1)2 dµ− λ̂

∫
Ω
φ̃ δ(φ)(g − c2)2 dµ .

Let us assume that φ satisfies the boundary condition

δ(φ)
∇φ · ν
|∇φ|

= 0 (11)

on ∂Ω; here ν is the unit (e. g. exterior) normal to ∂Ω. Using the Green-Ostrogradskǐı theorem,
we obtain the corresponding Euler-Lagrange differential equation

δ(φ)

(
λ div

(
∇φ
|∇φ|

)
− λ̂(g − c1)2 + λ̂(g − c2)2

)
= 0 (12)

on Ω. For numerical calculation it is necessary to replace δ by some “regularized Dirac function”
δε, e. g. by that from (8) or by that recommended in [5], p. 270,

δε(s) =
ε

π(ε2 + s2)
. (13)

The corresponding “regularized Heaviside function” Hε, substituting H, follows here easily by
the integration with respect to s in the form

Hε(s) =
1

2

(
1 +

2

π
arctan

(
s

ε

))
;

in case of (8) not in a simple analytical form. The existence and convergence results for the
minimization of G, consequently also for the solution of (12) and its modifications, follow from
the theory of Mumford-Shah segmentation problems, presented in [8]. An alternative proof is
sketched in [5], p. 269; it is based on the equivalent form of (9)

G(χ) = λ
∫
Ω
|∇χ| dµ+ λ̂

∫
Ω

(g − c1(χ))2 dµ− λ̂
∫
Ω

(g − c2(χ))2 dµ
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with an arbitrary characteristic function χ(x, y) of Θ (i. e. a function with values 0 or 1 almost
everywhere with respect to µ, in our notation identical with H(φ(x, y))) of a two-dimensional
set with finite perimeter and on some classical arguments (as lower-semicontinuity and its
consequences, cf. [14], p. 96) of calculus of variations.

To solve (12) directly, even for fixed c1 and c2 and a regularized δ, is not quite easy. However,
its reformulation

φ = φ+ τδε(φ)

(
λ div

(
∇φ
|∇φ|

)
− λ̂(g − c1)2 + λ̂(g − c2)2

)

for some positive τ motivates the construction of φ as a limit of a sequence of iterations
φ0, φ1, φ2, . . . by the formula

φk+1 = φk + τδε(φk)

(
λ div

(
∇φk+1

|∇φk|

)
− (g − c1k)

2 + (g − c2k)
2

)
(14)

with k ∈ {1, 2, . . .} for some initial estimate φ0; the indices k in c1 and c2 cannot be removed
because we know that c1 and c2 depend on φk. Let us remark that in the nomenclature of
evolution equations this is the Euler semi-implicit scheme for an initial problem, corresponding
to the “time-continuous” equation

φ̇ = δε(φ)

(
λ div

(
∇φ
|∇φ|

)
− (g − c1)2 + (g − c2)2

)
;

thus we have obtained certain kind of nonlinear diffusion with expected final stationary status
again.

After the standard finite difference discretization (14) generates a system of linear algebraic
equations with a sparse system matrix in each iteration step, whose numerical solution is not
not expensive. The decomposition of Ω is reasonable to be done exactly into the system of
square pixels: if h is the length of their edges, we are able to approximate the first derivatives
of φk for pixel centers with coordinates (x, y), using the central differences as

∂φk/∂x(x, y)≈
φk(x+ h, y)− φk(x− h, y)

2h
,

∂φk/∂y(x, y)≈
φk(x, y + h)− φk(x, y − h)

2h
.

Later we shall need also to approximate the second derivatives as

∂2φk/∂x
2(x, y)≈ φk(x+ h, y)− 2φk(x, y) + φk(x− h, y)

h2
,

∂2φk/∂y
2(x, y)≈ φk(x, y + h)− 2φk(x, y) + φk(x, y − h)

h2
,
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∂2φk/∂x∂y(x, y)≈
φk(x+ h, y + h)− φk(x− h, y + h)

2h2

+
φk(x− h, y − h) + φk(x+ h, y − h)

2h2
;

much more general formulae can be found in [31], p. 249, where the proper accuracy analysis
of various finite difference approximations is done. To force (11), some artificial nodes (outside
Ω) are needed: e. g. if a segment of ∂Ω is characterized by x = 0 and arbitrary y (from some
real interval, in practice for discrete values of y) then

∂φk/∂x(0, y) ≈
φk(h/2, y)− φk(−h/2, y)

h
= 0 ;

this is a very special case of the formula from [31], p. 264.

Let us believe that we have found a “stationary” φ(x, y). To generate all couples (xi, yi)
from the previous section, we need to calculate the zero points of φ. Since the minimization of
f is rather difficult, it would be useful to avoid it at all. For some fixed parameters a, b, x̃0, ỹ0

and ρ from the preceding section let us choose ϕi = 2πi/n for i ∈ {1, . . . , n} and calculate all
x = x̃i and y = ỹi for ϕ = ϕi from (4); in this way we get the coordinates of certain points Si.
For such arbitrary i let us consider 2 real functions

p(xi, yi) = φ(xi, yi)−σ ((yi − ỹ0)(x̃i − x̃0)− (xi − x̃0)(ỹi − ỹ0)) (ỹi − ỹ0) ,

q(xi, yi) = φ(xi, yi) + σ ((yi − ỹ0)(x̃i − x̃0)− (xi − x̃0)(ỹi − ỹ0)) (x̃i − x̃0)

where σ is some positive constant; their partial derivatives with respect to xi are

px(xi, yi) = ∂φ/∂x(xi, yi) + σ(ỹi − ỹ0)
2 ,

qx(xi, yi) = ∂φ/∂x(xi, yi)−σ(x̃i − x̃0)(ỹi − ỹ0)

and with respect to yi similarly

py(xi, yi) = ∂φ/∂y(xi, yi)−σ(ỹi − ỹ0)(ỹi − ỹ0) ,

qy(xi, yi) = ∂φ/∂y(xi, yi) + σ(x̃i − x̃0)
2 .

Let us put p(xi, yi) = q(xi, yi) = 0. Then (independently of σ) the matrix equation[
x̃i − x̃0 ỹi − ỹ0

x̃i − x̃0 ỹ0 − ỹi

] [
φ(xi, yi)

(yi − ỹ0)(x̃i − x̃0)− (xi − x̃0)(ỹi − ỹ0)

]
=

[
0
0

]

is valid. Since both x̃i = x̃0 and ỹi = ỹ0 cannot be true simultaneously, the existence of a
unique trivial solution of this system (by the classical Frobenius theorem) yields φ(xi, yi) = 0
and (yi − ỹ0)(x̃i − x̃0) = (xi − x̃0)(ỹi − ỹ0). This has a simple geometric interpretation: (xi, yi)
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determines the point of intersection of ∂Θ with the line connecting S̃ and Si. Consequently the
Newton algorithm [

xi

yi

]
←
[
xi

yi

]
−
[
px(xi, yi) py(xi, yi)
qx(xi, yi) qy(xi, yi)

]−1 [
p(xi, yi)
q(xi, yi)

]
(15)

is applicable again; the first estimate can be e. g. (xi, yi) ≈ (x̃i, ỹi). Nevertheless, one difficulty
occurs: all values of φ have been computed only for discrete nodes, identical with pixel centers,
thus its first and second partial derivatives should be (maybe slowly) interpolated or taken from
nearest nodes (which could reduce the rate of convergence); in much more general context such
problems are studied in [25], p. 117.

Let (10∗) refer to the “regularized” version of (10) with Hε instead of H and also formally
with φk instead of φ. Now we are ready to implement the following software algorithm:

I. initialize φ0, set k ← 0,

II. compute c1(φk) and c2(φk) from (10∗),

III. solve (14) to receive φk+1,

IV. check whether φk+1 is sufficiently close to φk; if not, set k ← k+1 and go back to II., else
accept φk as final φ,

V. initialize old a, b, x̃0, ỹ0, ρ,

VI. prepare (x1, y1), . . . , (xn, yn) by (15),

VII. compute new a, b, x̃0, ỹ0, ρ from (6),

VIII. check whether new and old a, b, x̃0, ỹ0, ρ are nearly the same; if not, take new values as
old ones and go back to VI.

The output should be the final estimates of a, b, x̃0, ỹ0, ρ at a subpixel quality level, sufficient for
the complete reconstruction of ω in $. Both initial settings I. and V. must be done carefully.
In case of V. the argumentation is evident from the concluding geometrical consideration in
the previous section. In case of I. namely φ0 = 0 everywhere is prohibited; moreover, the
convergence of the algorithm to some local (non-global) minimum of G (which is usually non-
convex) can occur, depending both on a “bad” estimate and on a “bad” regularization of type
(8) or (13); [5], p. 270, presents even another goniometric regularization with a strong tendency
to compute local minimizers.

The above sketched algorithm is able to be modified and generalized in several directions.
The idea to normalize |∇φk| to 1, discussed in [5], p. 272, comes from [29]; this prevents the
level set functions φk to become to flat which can be also avoided by some optional rescaling
or reinitialization, in our algorithm as an auxiliary step between VII. and VIII. In [3] the infor-
mation on an elliptical shape of ∂Θ is included in the form of certain penalization functional,
added to that analogous to 9. The variational formulations of [11] lead to the study of finite
element approximations; moreover, [11] includes the extensive overview of the state of art in
the theory of Mumford-Shah functionals, treated as shape optimization problems and solved
numerically using level-set techniques.
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4 Elliptical shape information in contour detection

The algorithm from the previous section consists evidently from two large blocks: the first one
(from step I. to step IV.) searches for ω̃, the second one (from step V. to step VIII.) assigns the
location of ω to any given ω̃. Unlike the second block, the first block ignores the information
that ω is an ellipse; thus it is seems to be natural to integrate this information into the first
block and simplify the second one. Although this is not easy, we shall show that such access is
possible, applying several results from two preceding sections.

Let us start with the basic idea of [3]: to select always such Θ that ∂Θ is an ellipse. We
know that ω̃ ≈ ∂Θ is some image of a circle in central projection, thus ω̃ must be an ellipse
which justifies our assumption. In the simplest (non-realistic) case ω̃ could be a unit circle,
thus it is reasonable to introduce a function

φ̄(x, y) = x2 + y2 − 1 ,

negative inside Ω̃, positive outside Ω̃ and zero-valued on Ω̃ and |φ(x, y)− φ̂(x, y)|2 characterizes
the imperfectness of the relation ω̃ ≈ ∂Θ. In the realistic case we must take

φ̄(x, y) = x̄2 + ȳ2 − 1 (16)

with (x̄, ȳ) coming from some affine transformation[
x̄
ȳ

]
=

[
ξ
η

]
+

[
cosϑ sinϑ
− sinϑ cosϑ

] [
αx
βy

]
;

our notation from Introduction is used here, α = ξ̄−1/2 and β = η̄−1/2 for brevity,

In [3] only a “rigid transformation” with a priori known α = β is studied; in our more
general case 5 new parameters α, β, ξ, η and ϑ occur. This is the same number of parameters
as that for the reconstruction of ω from ω̃, thus it could be seemingly useful to reformulate
(16) with x̃0, ỹ0, a, b and ρ instead of α, β, ξ, η and ϑ. Such reformulation would remove
the second block of the algorithm at all, but this leads to complicated evaluations, including
e. g. many Newton iterations of type (5), avoided even in the previous section. This could be
expected also by geometrical considerations: ω̃ (in the central projection) is not affine to ω,
only collinear. However, the determination of parameters x̃0, ỹ0, a, b and ρ if will be much
easier here – theoretically (for the quite exact values of xi and yi from (15)) n = 5 is always
sufficient.

We can easily see that in (16)

x̄ = αx cosϑ+ βy sinϑ+ ξ , ȳ = −αx sinϑ+ βy cosϑ+ η .

We must still consider φ̂, x̄ and ȳ as functions of x and y; nevertheless, we shall differentiate
them (for any fixed x and y) with respect to α, β, ξ, η and ϑ. We shall need especially the first



Stanislav Šťastńık and Jǐŕı Vala, Brno University of Technology

derivatives of x̄ and ȳ with respect to ϑ

x̄′ = −αx sinϑ+ βy cosϑ , ȳ′ = −αx cosϑ− βy sinϑ

and the second ones

x̄′′ = −αx cosϑ− βy sinϑ , ȳ′′ = αx sinϑ− βy cosϑ .

Then the first derivatives of φ̄ with respect to particular parameters are

∂φ̄/∂α= x̄x cosϑ− ȳx sinϑ , ∂φ̄/∂β = x̄y sinϑ+ ȳy cosϑ ,

∂φ̄/∂ξ= x̄ , ∂φ̄/∂η = ȳ , ∂φ̄/∂ϑ = x̄x̄′ + ȳȳ′ ,

the second derivatives similarly

∂2φ̄/∂α2 =x2 , ∂2φ̄/∂β2 = y2 , ∂2φ̄/∂ξ2 = ∂2φ̄/∂η2 = 1 ,

∂2φ̄/∂ϑ2 = x̄x̄′′ + ȳȳ′′ + x̄′2 + ȳ′2 ,

∂2φ̄/∂α∂ξ=x cosϑ , ∂2φ̄/∂α∂η = −x sinϑ ,

∂2φ̄/∂β∂ξ= y sinϑ , ∂2φ̄/∂β∂η = y cosϑ ,

∂2φ̄/∂α∂β= ∂2φ̄/∂ξ∂η = 0 , ∂2φ̄/∂ξ∂ϑ = x̄′ , ∂2φ̄/∂η∂ϑ = ȳ′ ,

∂2φ̄/∂α∂ϑ=x((x̄′ − ȳ) cosϑ− (ȳ′ + x̄) sinϑ) ,

∂2φ̄/∂β∂ϑ= y((ȳ′ + x̄) cosϑ+ (x̄′ − ȳ) sinϑ) .

Let us introduce one additional functional

Ḡ(φ, α, β, ξ, η, ϑ) = λ̄
∫
Ω
φ̄2δ(φ)|∇φ| dµ (17)

with some positive constant λ̄. Substituting G in (9) by G + Ḡ, we can see that Ḡ returns
certain penalization value, measuring the non-ellipticity of ∂Θ. Keeping α, β, ξ, η and ϑ fixed,
we can calculate the Gâteaux differential (in the same way as that of G)

DḠ(φ, φ̃) = λ̄
∫
Ω
φ̄2δ(φ)

∇φ̃ · ∇φ
|∇φ|

dµ .

Keeping φ fixed, we have

∂Ḡ/∂u = 2λ̄
∫
Ω
φ̄ ∂φ̄/∂u δ(φ)|∇φ| ,

∂2Ḡ/∂u∂v = 2λ̄
∫
Ω

(
φ̄ ∂2φ̄/∂u∂v + ∂φ̄/∂u ∂φ̄/∂v

)
δ(φ)|∇φ|
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for any u, v ∈ {α, β, ξ, η, ϑ} Thus, searching for the minimum of Ḡ (still with fixed φ), using
some formulae for numerical integration, similarly to (6) we can calculate

α
β
ξ
η
ϑ

←

α
β
ξ
η
ϑ

− M̄
−1


∂Ḡ/∂α
∂Ḡ/∂β
∂Ḡ/∂ξ
∂Ḡ/∂η
∂Ḡ/∂ϑ

 (18)

with

M̄ =


∂2Ḡ/∂α2 ∂2Ḡ/∂α∂β ∂2Ḡ/∂α∂ξ ∂2Ḡ/∂α∂η ∂2Ḡ/∂α∂ϑ
∂2Ḡ/∂α∂β ∂2Ḡ/∂β2 ∂2Ḡ/∂β∂ξ ∂2Ḡ/∂β∂η ∂2Ḡ/∂β∂ϑ
∂2Ḡ/∂α∂ξ ∂2Ḡ/∂β∂ξ ∂2Ḡ/∂ξ2 ∂2Ḡ/∂ξ∂η ∂2Ḡ/∂ξ∂ϑ
∂2Ḡ/∂α∂η ∂2Ḡ/∂β∂η ∂2Ḡ/∂ξ∂η ∂2Ḡ/∂η2 ∂2Ḡ/∂η∂ϑ
∂2Ḡ/∂α∂ϑ ∂2Ḡ/∂β∂ϑ ∂2Ḡ/∂ξ∂ϑ ∂2Ḡ/∂η∂ϑ ∂2Ḡ/∂ϑ2

 ;

all derivatives of Ḡ here must be expressed using the formulae from those of φ̄ and some
numerical integration scheme. Moreover, some ellimination scheme should be prefered to the
construction of M̄−1 in (18); let us remember the same comment with M−1 in (6).

Let us come back to the case with variable φ and fixed α, β, ξ, η and ϑ. The minimization
of the G+ Ḡ from (9) and (17) leads (in comparison with the previous section) to the following
modifications: the left-hand side of (12) gets λ + λ̄φ̄2 instead of λ and the right-hand side of
(14), after the change referenced as (14∗), gets λ+ λ̄φ̄2

k instead of λ where φ̄k is set by the last
update of α, β, ξ, η and ϑ; all remaining relations can be extended in the similar way.

Let (18∗) refer to (18) where in the definition of G (similarly to the assignment of (10∗) to
(10), occuring in the algorithm in the preceding section yet) δ is replaced by δε and φ by φk.
Let (16∗) refer to (16) with φ̄ replaced by φ̄k. Our new software algorithm reads:

I. initialize φ0 and also old α, β, ξ, η, ϑ, set k ← 0,

II. compute c1(φk) and c2(φk) from (10∗),

II.a find φ̄k by (16∗),

II.b compute new α, β, ξ, η, ϑ from (18∗),

II.c check whether new and old α, β, ξ, η, ϑ are nearly the same; if not, take new values as old
ones and go back to II.a,

III. solve (14∗) to receive φk+1,

IV. check whether φk+1 is sufficiently close to φk; if not, set k ← k+1 and go back to II., else
accept φk as final φ,

V. initialize old a, b, x̃0, ỹ0, ρ,

VI. prepare (x1, y1), . . . , (xn, yn) by (15),

VII. compute new a, b, x̃0, ỹ0, ρ from (6),
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VIII. check whether new and old a, b, x̃0, ỹ0, ρ are nearly the same; if not, take new values as
old ones and go back to VI.

This algorithm is improved (in comparison with the previous one) by the nested cycle in II.
Its drawback is that especially II.b is rather expensive; this is only partially compensated by
the above explained simplification in the second block (from V. to VIII.). However, various
programmer tricks may be applied to avoid too time-consuming calculations (with the risk of
slower convergence): e. g. φ̄j may be considered in iv) instead for φ̄k until k− j is smaller than
certain prescribed integer.

Following [3], p. 427, let us now notice another trick, seemingly removing the nested cycle
at all. Let us consider the symbolic vector operator

∇̄ = (∂/∂α, ∂/∂β, ∂/∂ξ, ∂/∂η, ∂/∂ϑ) .

Then (18) can be interpreted, thanks to the integration over Ω, as searching for the real vector
V = (α, β, ξ, η, ϑ) from the nonlinear system of 5 algebraic equations∫

Ω
∇̄φ̄ φ̄ δε(φ)|∇φ| dµ = 0 . (19)

Thus (18) is possible to be replaced by another iteration scheme

Vk+1 = Vk + 2τ λ̄
∫
Ω
∇̄φ̄k φ̄k δε(φk)|∇φk| dµ = 0 (20)

where Vk, k ∈ {0, 1, 2, . . .}, are the approximations of V (which could be identified again as
certain “diffusion”). This consideration results in the algorithm where no high accuracy ellipse
fitting in every step is needed:

I. initialize φ0 and V0, set k ← 0,

II. compute c1(φk) and c2(φk) from (10∗),

II.a find φ̄k by (16∗),

III. solve (14∗) to receive φk+1,

III.a solve (20) to receive Vk+1,

IV. check whether φk+1 is sufficiently close to φk and Vk+1 is sufficiently close to Vk; if not,
set k ← k + 1 and go back to II., else accept φk as final φ and Vk as final V

V. initialize old a, b, x̃0, ỹ0, ρ,

VI. prepare (x1, y1), . . . , (xn, yn) by (15),

VII. compute new a, b, x̃0, ỹ0, ρ from (6),

VIII. check whether new and old a, b, x̃0, ỹ0, ρ are nearly the same; if not, take new values as
old ones and go back to VI.
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In this algorithm no high-accuracy ellipse fitting in every k-th iteration is necessary, each φ̄k

by (16) is computed only once, being not predicted and corrected.

Finally let us come back to the idea of total removing of all steps after IV. To express x
and y for (16) is not easy – cf. the iteration (5) for discrete points, thus it is better to rewrite
(16) indirectly as

φ̄(x, y) = 1− t2 , x = x̃0 + (γx − x̃0)t , y = ỹ0 + (γy − ỹ0)t (21)

for t ≥ 0 and 0 ≤ ϕ < 2π (the new coordinates t and ϕ, applied in $̃, correspond to standard
polar coordinates in $) where γx and γy are 2 (rather complicated) functions of ϕ, introduced
(and also differentiable) in the same way as γxi and γyi, hidden in (5); later (16∗) will refer to
the same with φ̄ replaced φ̄k. Instead of ∇̄ let us consider the symbolic vector operator

∇̄∗ = (∂/∂a, ∂/∂b, ∂/∂x̃0, ∂/∂ỹ0, ∂/∂ρ) .

Then (18) can be interpreted, thanks to the integration over Ω, as searching for the real vector
U = (a, b, x̃0, ỹ0, ρ) from (19) with ∇̄∗ substituting ∇̄. Thus (20) can be rewritten with U
instead of V (all indices remain unchanged) which will be referenced as (20∗). The resulting
algorithm seems to be very short:

I. initialize φ0 and U0, set k ← 0,

II. compute c1(φk) and c2(φk) from (10∗),

II.a find φ̄k by (21),

III. solve (14∗) to receive φk+1,

III.a solve (20∗) to receive Uk+1,

IV. check whether φk+1 is sufficiently close to φk and Uk+1 is sufficiently close to Uk; if not,
set k ← k + 1 and go back to II., else accept φk as final φ and Uk as final U .

Nevertheless, to solve (20∗) we have to integrate in fact not over Ω, but over certain transformed
domain, due to the transformation from (21); its Jacobi matrix is

J(t, ϕ) =

[
∂x/∂ϕ ∂x/∂t
∂y/∂ϕ ∂y/∂t

]
=

[
γ′x γx − x̃0

γ′y γy − ỹ0

]
,

thus
dµ = dx dy = |J(t, ϕ)| dϕ dt =

∣∣∣ t (γ′x(γy − ỹ0)− γ′y(γx − x̃0)
)∣∣∣ dϕ dt

which complicates any numerical integration scheme substantially. To illustrate this statement,
let us remind that

∇φk = (∂φk/∂ϕ ∂ϕ/∂x+ ∂φk/∂t ∂t/∂x , ∂φk/∂ϕ ∂ϕ/∂y + ∂φk/∂t ∂t/∂y)
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as a function of ϕ and t is needed in (20∗); this must be done using the formal differentiation
of x and y in (21):

γ′xt 0 γx − x̃0 0
0 γ′xt 0 γx − x̃0

γy − ỹ0 0 γ′yt 0
0 γy − ỹ0 0 γ′yt



∂ϕ/∂x
∂ϕ/∂y
∂t/∂x
∂t/∂y

 =


1
0
0
1

 .

The same fact obstructs to rewrite (10∗) and (14∗) in φ and t easily. Nevertheless, the advantage
of such algorithm is that the “fully diffusional approach” may give all resulting parameters U
without forcing any a posteriori Newton iterations.

Let us notice some other technical problems. Namely all steps III. (including their modifi-
cations) contain “regularized Dirac functions” δε; their numerical treatment for ε close to 0 can
be expected to force local mesh refinements in the finite difference approach. Some authors are
thus motivated to rewrite equations like (14) into their variational form and analyse them using
some multigrid finite element technique; e. g. [11] prefers CFEM (the “composite finite element
method”) by [17], an other efficient access to such multi-scale problems has been suggested in
[15]. For illustration of the variational approach, let us rewrite our crucial equation (14∗) in
its integral form, respecting boundary conditions of type (11). The result is the “discretized
evolution equation”∫

Ω
φ̃
φk+1 − φk

τ
dµ +

∫
Ω
∇
(
φ̃ δε(φk)

(
λ+ λ̄φ̄2

k

)) ∇φk+1

|∇φk+1|
dµ

=
∫
Ω
φ̃ δε(φk)(g − c2k)

2 dµ−
∫
Ω
φ̃ δε(φk)(g − c1k)

2 dµ ,

satisfied for any admissible test function φ̃ (e. g. , in the simplest case, linear on the trianular
mesh); in practice the functions φ̃ form a basis of some finite-dimensional function space con-
taining φk+1 that can be determined by solving a finite system of linear algebraic equations.
The macro-scale choice of φ̃ can correspond to the size of pixels, the lower-scale one enables us
refinements due to δε.

5 A remark to one practical application

As an illustrative example of practical application of the above mentioned theory let us con-
sider the following situation: we need to monitor the displacement of some part of building
construction in time, caused by various loads, in time, related to some a priori known reference
configuration. Our camera (rather cheap, but with guaranteed properties) obtains and stores
sequences of images in particular times. The above analyzed algorithms give us a chance to
detect any displacement at rather high accuracy level.
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The real experiments with such snapshot sequencies are now a part of research at the
Department of Technology of Buliding Materials and Prefabricated Elements of the Faculty
of Civil Engineering at the Brno University of Technology. The analysis of results should be
prepared for publication in the near future.
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