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Abstract

Understanding non-stationary thermal behaviour of buildings, its prediction and mod-
ification belong to priorities of the design of modern engineered buildings. Reliable math-
ematical models and software codes should contain information about a (quasi)periodic
material microstructure; however, the macro- and microscales are allowed to differ dra-
matically, thus the standard finite element mesh refinement technique is not available. We
shall combine the correction algorithm for the (not necessarily conforming) two-scale finite
element discretization of special elliptic and parabolic problems (using the sequences of
Rothe) with the two-scale homogenization. Using two levels of not necessarily nested grids,
for our problem macroscopic convergence results similar to those known from the standard
finite element approximation theory can be derived; more detailed local microstructural
analysis can be done a posteriori.

1 Modelling of the heat transfer in buildings

Most materials used in civil engineering have a heterogenous structure, characterized by parti-
cles with quite different properties and pores (containing air, liquid water, etc.) of both micro-
and macroscopic size. This brings difficulties to the reliable prediction of their thermal be-
haviour. The physical description of thermal transfer in buildings is based on the (seemingly
simple) classical law of conservation of energy (and, alternatively, from further conservation
laws – cf. [13], p. 38), formulated on a domain Ω in the 3-dimensional Euclidean space R3; the
mathematical equations of heat conduction (in a differential or an integral form) then incor-
porate material characteristics (for a stationary process at least a thermal conductivity, for a
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2 Stanislav Šťastńık and Jǐŕı Vala, Brno University of Technology

non-stationary one an additional characteristic derived from specific heat) whose reliable “ef-
fective values” (at some macroscopic level) are often not available (unlike those of separated
particles) a priori. To complete the mathematical formulation of the problem, it is necessary to
include some boundary (in the general non-stationary case also some initial) conditions. In most
technical applications the Fourier boundary conditions of thermal convection from the outer
environment (or between two neighbouring domains) are needed; other classes of boundary
conditions (not discussed in this paper) are analyzed in [7], p. 207.

We shall use the standard notation of Sobolev spaces, compatible with [10]; moreover (for
brevity) V = W 1,2(Ω)3, H = L2(Ω)3 and X = L2(∂Ω)3. In general, we shall study the thermal
behaviour of certain construction, occupying a domain Ω, in a time interval Θ = [0, T ]; T here
is some prescribed positive time. The dot symbol will denote a time derivative everywhere.
Following [12], our model problem is to find such temperature τ ∈ C(Θ, H)∩L∞(Θ, V ) with a
time derivative τ̇ ∈ L∞(Θ, H) that, in terms of scalar products (., .) in H or H3, respectively,
and 〈., .〉 in X,

(v, C̃τ̇) + (∇v, Ã∇τ) + 〈v, Bτ〉 = 〈v, Bτ×〉 ∀ v ∈ V (1)

for certain given (time-variable) temperature τ× of outer environment in Θ and prescribed
initial values τ0 of τ on Ω in zero time. In this formulation A, B, C are positive material
characteristics bounded on Ω or ∂Ω: A is the thermal conductivity – for simplicity the same
in all directions (also more complicated cases are frequently allowed to be transformed to this
case, as discussed in [7], p. 206), C is the specific heat multiplied by the material density (both
A and C are related to a domain Ω), B is the heat convection factor (related to the boundary
∂Ω of a domain Ω). The symbols Ã, C̃ refer to some “effective values” of A, C (rarely known
a priori, unlike A and C); their construction is not trivial.

The evolution of τ× is rather slow (in practice quasiperiodic in day and year cycles); this
argument seems to justify the idea to neglect the first additive term in (1) and prescribed τ0

with the aim to obtain the more simple (stationary) problem: in any time t ∈ Θ to find such
temperature τ(t) that

(∇v, Ã∇τ(t)) + 〈v, Bτ(t)〉 = 〈v, Bτ×(t)〉 ∀ v ∈ V . (2)

This removes the effect of thermal accumulation, important in practice; nevertheless, we shall
start with the analysis of (2) which can be considered as certain elliptic problem (in a fixed
time t) and then we shall come to the more general parabolic problem (1).

2 Two-scale grids and two-scale homogenization

In both mathematical and engineering books and papers the definitions of and references to
“two-scale problems” (or even “multiple-scale problems”) occur in various senses. The very



On the two-scale approach to the heat transfer in buildings 3

rough classification of such approaches can be the following: i) some multiple levels of not
necessarily nested grids are considered (and some successive corrections needed) without deeper
analysis of microstructural phenomena, ii) the mathematical two-scale convergence theory is
applied. The example of the original theoretical analysis of type i) is [4]. The fundamental
definitions and lemmas of the theory ii) come from [11], [1] (for elliptic problems) and [5] (for
parabolic problems); their extensive overview with remarks to technical applications (including
the Dirichlet boundary problem for the heat equation) is contained in [3], much more references
can be found in [14] and [16].

Let Λ be some subdomain of Ω; in practice vol Ω � vol Λ. Let us assume that the de-
composition of Ω into finite elements generates finite-dimensional subspaces Vh of V and the
decomposition of Ω finite-dimensional subspaces Vδ of V ; h and δ here are norms of such de-
compositions (upper bounds for characteristic lengths of their finite elements). It is easy to see
(despite h → 0) h � δ > 0, thus the notation Vh and Vδ cannot be mismatched. We know
that it is not realistic to assume some relation between Vh and Vδ a priori. Following [4], let us
therefore introduce a new space (of higher finite dimension) Vhδ = Vh + Vδ. From the standard
Friedrichs inequality (cf. [10], p. 216) and from the trace theorem, incorporating certain as-
sumption on the regularity of the boundary (satisfied in reasonable technical applications – for
details see [10], p. 222) we can easily derive that a(. , .) = (∇. , Ã∇.) + 〈. , B.〉 defines a bilinear,
symmetric, continuous and coercive form a : V × V → R. Since a(. , .) can be identified with
a scalar product in V and all above mentioned spaces are Hilbert ones, it is possible to make
use of it to define operators of orthogonal projections Ph : Vhδ → Vh and Pδ : Vhδ → Vδ; such
operators will be useful for the design of the iterative algorithm, generating special sequences
of approximate solutions of (1). The discretized forms of (1) for our two (macro- and micro-)
scales are

(∇vh, Ã∇τh) + 〈vh, Bτh〉 = 〈vh, Bτ×〉 ∀ vh ∈ Vh , (3)

(∇vδ, A(./ε)∇τ ε
δ ) + 〈vδ, Bτ ε

δ 〉 = 〈vδ, Bτ×〉 ∀ vδ ∈ Vδ ; (4)

we are seeking for τh ∈ Vh and for τ ε
δ ∈ Vδ (in certain time t which is not emphasized here

explicitly). The existence of solutions of (2), (3) and (4) follows from the Lax-Milgram theorem
(cf. [3], p. 66).

It is not quite easy to construct a(. , .) in practice because we do not know “homogenized
thermal conductivity” Ã on Ω properly – at least on Λ (where we intend to analyze lower-
scale phenomena) we have to obtain it by some homogenization process (via ε → 0) from
aε(v, τ ε) = (v, A(./ε)τ ε) where some A ∈ L∞(Λ × R) is prescribed such that its values are Y -
periodic in the second variable (we have Ã(x) and A(x, y) with x ∈ Λ, y ∈ Y , the first variable x
is not indicated in (3), (4)), Y is a unit cell in R3 (a representative volume element of paralleliped
shape, often rescaled as Y = [0, 1]3) and v, τ ε ∈ V . To make the homogenization possible, we
must require aε(v, τ ε) → a(v, τ) (in R for each v ∈ V ) as ε → 0. The explicit formula for
evaluation of Ã is known only for very special microstructures, namely for layered materials
(cf. [3], p. 98, and [6]). However, the technique of the two-scale convergence (in more general
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context, including strongly nonlinear problems and general measures, introduced in [16]) is
available: since {τ ε} (with positive decreasing ε) is a bounded sequence in V (at least in certain
V Λ, containing all restrictions of functions from V to Λ) then τ ε ⇀⇀ τ̂ for certain τ̂ ∈ L2(Λ×Y );
the symbol ⇀⇀ is reserved for the two-scale convergence in L2(Λ × Y ) in sense of [3], p. 176.
Moreover, ∇τ ε ⇀⇀ ∇xτ̂ +∇y τ̂

′; here an additional function τ̂ ′ ∈ L2(Λ, W 1,2
# (Y )) (the index #

here forces the Y -periodicity) has the zero mean value
∫
Y τ̂ ′(., y) dy = 0 on Λ. Consequently

also τ ε → τ̂ (where the second variable is omitted) in L2(Λ) and Aε(./ε)∇τ ε ⇀ Ã∇τ̂ (weakly)
in L2(Λ)3. In general, setting a corresponding Ã ∈ L2(Λ) (for a fixed x ∈ Λ a constant)
requires solving an auxiliary system of differential or integral equations (for details see [3],
p. 112). Under more regularity assumptions such expensive calculations can be avoided (see [9]
and other references from [14]).

3 Iterative computational algorithm for the stationary

heat transfer

Let us consider an estimate τ 0 of a solution τ of (2). Let ω be certain real parameter, 0 < ω < 2.
Following [4] (with slight modifications, coming from the two-scale analysis) and using the brief
notation b(v) = 〈v, Bτ×〉 for any v ∈ V let us suggest the following algorithm: i) find such

wε
δ ∈ Vδ that aε(vδ, w

ε
δ) = b(vδ)− aε(vδ, τ

0) for all vδ ∈ Vδ, ii) set τ
1
2 = τ 0 + ωwε

δ , iii) find such

wh ∈ Vh that a(wh, vh) = b(vh)− a(τ
1
2 , vh) for all vh ∈ Vh, iv) set τ 1 = τ

1
2 + ωwh, v) replace τ 0

by τ 1, etc.

Analyzing this algorithm, using the projections Ph and Pδ, repeating step-by-step analogous
calculations from [14], we obtain wh = Ph(τhδ − τ

1
2 ) and wε

δ = Pδ(τhδ − τ 0) + eδ where eδ is a
solution of an equation a(vδ, eδ) = (a− aε)(vδ, w

ε
δ − τ 0) for all vδ ∈ Vδ and τhδ comes from the

discrete analogy of (2): find such τhδ ∈ Vhδ that

a(vhδ, τhδ) = b(vhδ) ∀ vhδ ∈ Vhδ . (5)

Consequently (as in [14] again) we have τhδ− τ 1 = (I−ωPh)(I−ωPδ)(τhδ− τ 0)−ω(I−ωPh)eδ

where I is an identity mapping. For simplicity, let us supply the Hilbert space V by the norm

‖.‖ =
√

a(. , .); similar norms are admissible in finite-dimensional subspaces of V , too. By the

strengthened Cauchy-Buniakowskǐı-Schwarz inequality from [4] the norm of (I−ωPh)(I−ωPδ)
is always (under the assumption 0 < ω < 2) lesser than 1; thus ‖τhδ−τ 1‖ ≤ β‖τhδ−τ 0‖+α‖eδ‖
with some positive α and β where β < 1 and for an arbitrary integer n finally

‖τhδ − τn‖ ≤ βn‖τhδ − τ 0‖+
1− βn

1− β
α‖eδ‖ .

The limit passage n →∞ and ε → 0 gives immediately ‖τhδ−τn‖ → 0. It remains to verify
the expected limit relation between solutions τhδ of (5) and τ of (2). Comparing (5) with (2)
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with a test function vhδ ∈ Vhδ instead of v ∈ V , we have a(vhδ, τ − τhδ) = 0. Assuming that
τ ∈ V ∩W 2,2(Ω) (although this requirement will be later removed), we can consider certain τ̃ ,
defined in the following way: τ̃ = τ on Ω \Λ and τ̃ = Eτ on Λ where E is a bounded extension
operator from W 2,2(Ω\Λ) to W 2,2(Ω). We are allowed to assume that the norm of τ̃ in W 2,2(Λ)
is not greater than the norm of τ in W 2,2(Λ) and also that the norm of τ̃ in W 2,2(Ω) is not
greater than the norm of τ in W 2,2(Ω \Λ), multiplied by some generic constant; the validity of
this assumption (due to the geometry of Ω and Λ) can be verified by means of the extension
theorems in Sobolev spaces (for details see [2], pp. 264, 271 and 285).

Let us now set vhδ = τhδ − τ̃hδ where τ̃hδ = rhτ̃ + rδ(τ − τ̃) and rh and rδ are the standard
interpolants to the spaces Vh and Vδ, respectively. We obtain a(vhδ, τ− τ̃hδ) = a(vhδ, τhδ− τ̃hδ) =
a(vhδ, vhδ), from this the estimate ‖vhδ‖2 ≤ ‖τ − τhδ‖‖vhδ‖, thus (if τ̃hδ 6= τhδ) ‖τhδ − τ̃hδ‖ ≤
‖τ − τhδ‖ and also ‖τ − τhδ‖ ≤ ‖τ − τ̃hδ‖+ ‖τhδ − τ̃hδ‖ ≤ 2‖τ − τ̃hδ‖ .

The last step is to verify ‖τ − τ̃hδ‖ → 0 as h, δ → 0. The classical results (rewritten
in our notation) from the finite element interpolation theory (under some (semi)regularity
assumption on the family of decomposition to finite elements) are ‖τ̃ − rhτ̃‖ ≤ ζh‖τ‖W 2,2(Ω\Λ),
‖(τ − τ̃) − rδ(τ − τ̃)‖ ≤ ζδ‖τ − τ̃‖W 2,2(Λ); ζ is a generic constant. The expected conclusion
follows from this and from the estimate ‖τ − τ̃hδ‖ ≤ ‖τ̃ −rhτ̃‖+‖(τ − τ̃)−rδ(τ − τ̃)‖. In case of
“insufficiently smooth” τ (τ may be not contained in W 2,2(Ω)) the standard density argument
(V ∩W 2,2(Ω) is dense in V ) leads to the same conclusion.

Two illustrative figures show i) temperature isotherms in a part of certain advanced (macro-
scopic) window construction, ii) distributions of heat fluxes−A∇τ in a non-homogenous rubber-
based insulation layer in great detail (a square with edge length 0.1 mm). Our original sta-
tionary problem in R3 is reduced to the two-dimensional one, all computations are ANSYS-
supported.
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The following sequence of figures demonstrates some typical examples of microstructure of
real insulation materials.

4 Generalization to the non-stationary heat transfer

The numerical analysis of the non-stationary heat transfer comes from the discrete forms of (1)

(vh, C̃(τsh − τs−1 h))/σ + (∇vh, Ã∇τsh) + 〈vh, Bτsh〉 = 〈vh, Bτ×sh〉 ∀ vh ∈ Vh ,

(vδ, C(./ε)(τ ε
sδ − τ ε

s−1 δ))/σ + (∇vδ, A(./ε)∇τ ε
sδ) + 〈vδ, Bτ ε

sδ〉 = 〈vδ, Bτ×sδ〉 ∀ vδ ∈ Vδ ,

generalizing (3) and (4) in time t = sσ (cf. (2)), s ∈ {1, . . . ,m}; we are seeking for τsh ∈ Vh and
for τ ε

sδ ∈ Vδ, σ here is a real time interval length, σ = T/m for some integer m where m →∞.
The construction of C̃ is even more simple than that of Ã; for details see [3], p. 107, and [6].
Since τ0 is known a priori, a parabolic problem can be substituted by a sequence of elliptic ones
for particular s: instead of a(. , .) we have some (∇. , Ã∇.) + (. , C̃.)/σ and the right-hand side
includes new additional terms (vh, C̃τs−1 h))/σ or (vδ, C(./ε)τ ε

s−1 δ))/σ, respectively.

Using the technique of discretization in time, explained (even in more general context) in
[15], we come to similar results as in the stationary case: applying the approach of [15], p. 592
(based on the construction of Rothe sequences of abstract functions Θ → V , linear or constant
on every time interval {t ∈ Θ : (s − 1)σ < t ≤ sσ}, and on the Eberlein-Shmul’yan and
Arzelà-Ascoli theorems) with respect to [5], p. 334 (with slight modifications, forced by the
two-scale finite element discretization on Ω and Λ), we are able to verify that the limit passage
σ, h, δ, ε → 0 generates a solution of (1) with the expected properties τ ∈ C(Θ, H)∪L∞(Θ, V ),
τ̇ ∈ L∞(Θ, H); the local recognition of τ ε

sδ for a finite ε and σ, h, δ → 0 (h � δ, s ∈ {1, . . . ,m}
for m →∞) is available again.

We can conclude that in case of linearized problems of heat transfer (where A, B, C are
independent of τ) the two-scale finite element method, applying the iterative algorithm with
“effective values” of material characteristics, whose basic idea comes from [4], gives numerical
results similar to those from the classical finite element analysis. Nevertheless, in more com-
plicated (nonlinear) cases the evaluation of such homogenized material characteristics may be
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very expensive or not available at all, although the corresponding initial and boundary value
problems are solvable (as in [16] and [15]). Further generalizations are needed in practice: the
heat transfer should be coupled with the moisture transfer (cf. [13], p. 45, and [8]) and incor-
porate chemical reactions (as carbonation), mechanical deformation, etc. The development of
effective numerical algorithms simulating such processes and phenomena seems to belong to
significant research directions of computational mechanics in the near future.
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