On some applications of Lyapunov functions
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It is well known that the Lyapunov’s second method (see[1-5]) is an interesting and fruitful
technique that has gained increasing significance and has given decisive impetus for modern
development of a stability theory of differential and integrodifferential equations. Lyapunov’s
functions serve as a vehicle to transform given complicated systems into relatively simpler sys-
tems, and therefore, it is enough to investigate the properties of these simpler systems.

In this paper we will investigate using Lyapunov functions an asymptotic behaviour of solu-
tions the following initial value problem

' = f(t,z), w(to) = 20, to >0, (1)

where f € C[R' x s(p), R"], s(p) = {x € R" : |z| < p}. Assume, for convenience, that the
solution z(t) = x(t,tp,zo) of (1) exists, is unique for ¢ > ¢ty and f(¢,0) = 0 so that we have the
trivial solution = = 0.

Denote k = {0 € C[[0,p), R"]} where o(t) is strictly increasing and o(0) = 0.

A function V € C'[RT x s(p), RT] will be called positive definite (descrescent) if there exists a
function a € k such that V(¢t,z) > a(|z|) (V (¢, z) < a(|z])).

Now let us state the well known original theorems of Lyapunov for stability and asymptotic
stability in a suitable form.

Theorem 1. Assume that
(H) V € CYR* x s(p), RY], V is positive definite and V (t,0) = 0.
If V'(t,x) <0 on R x s(p), then the trivial solution of (1) is stable.

Theorem 2. Suppose that condition (H) holds. Assume further that V is decrescent and
V'(t,x) < —c(|z|) on RT x s(p), where ¢ € k. Then the trivial solution of (1) is uniformly
asymptotically stable.

These two theorems have been modified, extended and generalized in various aspects. For
example , if we omit that V is descrescent in Theorem 2. and suppose that V (¢,0) = 0, we still
get the stability of the trivial solution (see[3]).

If we suppose that condition (H) holds, f is bounded on R* x s(p), and V'(t,z) < —c(|z|) on
R xs(p),, where ¢ € k then the trivial solution of (1) is asymptotically stable (The Marachkov’s
theorem [4]).

The positive definiteness of V (¢, z) in the Marachkov’s theorem can be weakened as follows.

If we assume that , instead of the positive definiteness of V (¢, ), a weaker condition, namely,



V(t,z) =0, V(t,z) > 0, then the conclusion of the Marachkov’s theorem holds.
Now we give an generalization of the Marachkov’s result using two Lyapunov functions.

Theorem 3. Assume

(i) V € CH[RT x s(p), RT], V is positive definite, V(t,0) = 0 and
V'(t,x) < —c(W(t,x)) on R* x s(p), where c € k.

(ii) W € CY[R*" x s(p), RT], W is positive definite and W'(t,x) is bounded from above or
from below on Rt x s(p),.

Then the trivial solution of (1) is asymptotically stable.

The first Lyapunov function V serves to obtain the stability and the second Lyapunov function
W relates suitably to the first one. The advantage is that one can utilize the monotone character
of V(t,z(t)).
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