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1 Introduction

The aim of the article is to present simulation of non-convex pattern growth for the system of
phase-field equations endowed by anisotropy. The equations represent a mathematical model of
solidification of pure crystalline substances at micro-scale. The mentioned physical phenomenon
is accompanied by presence of an interface between phases which can move in space and is
determined intrinsically by the state of the physical system, its boundary and initial data. The
paper deals with the anisotropic model has been presented in the following form:
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∂Ω
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Here, ξ > 0 is the ”small” parameter (thickness of the interface), and f0 the derivative of
double-well potential. The coupling function F (u) is bounded and continuous, or even Lipschitz-
continuous. The anisotropy is included using the monotone operator T 0 operating with the
field gradient. We consider f0(p) = ap(1 − p)(p − 1

2
) with a > 0. The enthalpy is given

by H(u) = u − Lχ(p), where the coupling function χ is monotone with bounded, Lipschitz-
continuous derivative: χ(0) = 0, χ(0.5) = 0.5, χ(1) = 1, supp(χ′) ⊂ 〈0, 1〉. For the sake of
simplicity, Ω is rectangle. Obviously, the extension to higher dimensions, and to other boundary
conditions is possible. The analysis presented in this article has been motivated by numerical
studies obtained by the model both for the case of curve dynamics in the plane (see [2]), and for
the case of microstructure growth in solidification (see [1]). The model works with an anisotropy
rigorously implemented into the equations. Finally, the model gives reasonable results even in
case of non-convex anisotropies, when the mentioned theory is not applied. Our aim is to present
numerical convergence results for the onset of dendritic growth.

2 Computational results

The model (1) is proved to have a unique weak solution with suitable properties. The numerical
scheme based on the method of lines is convergent (see [1]). We have performed a series of com-
putations to show that it yields a good approximation of the original problem and to investigate
the solution itself.



Example shows the growing dendrite with imposed weak (convex) anisotropy. The shape of
the solution is presented in Figure 1. The computation demonstrates development of primary
dendrite branches.
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Figure 1: Shape of the solution for Example.
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