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Abstract
We consider the stationary Stokes system with mixed boundary conditions in polygonal

domain. Let Ω ⊂ R2 be a bounded domain, ∂Ω ∈ C0,1 and ∂Ω = Γ1∪Γ2 such that Γ1 and Γ2

are closed, sufficiently smooth, 1-dimensional measure of Γ1 ∩ Γ2 is zero and 1-dimensional
measure of Γ1 is positive. We prescribe the non-slip boundary condition on Γ1 and the
boundary condition

−Pn +
∂u
∂n

= 0

on Γ2. Here u = (u1, u2) is velocity, P represents pressure and n = (n1, n2) is an outer
normal vector. We consider corner points on boundary, where the boundary conditions
change their type. The weak solution to the Stokes system with mixed boundary conditions
in a polygonal domain belongs to weighted Sobolev spaces. Regularity results are contained
in [2] and [9]. The regularity results are important for an error analysis of numerical methods,
i.e. the regularity of the weak solution has a great influence over the rates of convergence for
finite element methods. We present finite element error estimates depending on regularity
of the weak solution.

1 Introduction

Let Ω be a polygonal domain in IR2 with a Lipschitz boundary and with corner points on
boundary, ∂Ω ∈ |C0,1 and let Γ1, Γ2 be open disjoint subsets of ∂Ω such that ∂Ω = Γ1 ∪ Γ2,
Γ1 6= ∅ and the 1-dimensional measure of ∂Ω − (Γ1 ∪ Γ2) is zero. The domain Ω represents a
channel filled up with a fluid, Γ1 is a fixed wall and Γ2 is both the input and the output of the
channel.
The classical formulation of our problem is as follows:

−ν∆u +∇P = f in Ω, (1)

div u = 0 in Ω, (2)

u = 0 in Γ1, (3)

−Pn + ν
∂u

∂n
= 0 in Γ2. (4)

Functions u, P, f are “smooth enough”, u = (u1, u2) is velocity, P represents pressure, ν denotes
the viscosity, g is a body force and n = (n1, n2) is an outer normal vector. The problem (1)–(4)
will be called the steady Stokes problem with the mixed boundary conditions. For simplicity we
suppose that ν = 1 throughout this chapter.
The Dirichlet boundary condition (3) expresses a non-slip behaviour of the fluid on fixed walls
of the channel. The condition (4) expresses ”do nothing” boundary condition.



Fig. 1: Polygonal domain with corner points.
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2 Weak formulation of the problem

Let
E(Ω) =

{
u ∈ C∞(Ω)2; divu ≡ 0, suppu ∩ Γ1 ≡ ∅} .

Let V k,p be a closure of E(Ω) in the norm of W k,p(Ω)2, k ≥ 0 (k need not be an integer) and
1 ≤ p < ∞. Then V k,p is a Banach space with the norm of the space W k,p(Ω)2. For simplicity,
we denote V 1,2 and V 0,2, respectively, as V and H. Note, that V and H, respectively, are Hilbert
spaces with scalar products

((
. , .

))
V

and
((

. , .
))

H
,

((
. , .

))
V

=
((
Φ,Ψ

))
V

=
∫

Ω
∇Φ · ∇Ψ d(Ω) =

∫

Ω

∂Φi

∂xj

∂Ψi

∂xj
d(Ω)

and ((
. , .

))
H

=
((
Φ,Ψ

))
H

=
∫

Ω
Φ ·Ψ d(Ω) =

∫

Ω
ΦiΨi d(Ω)

and they are closed subspaces of spaces W 1,2(Ω)2 and L2(Ω)2.

Definition 1 Let f ∈ H. Then u is called a weak solution of the Stokes problem with the mixed
boundary conditions and with data f (problem (1)-(4)) if u ∈ V and

((
u, v

))
V

=
((

f ,v
))

H
(5)

holds for every v ∈ V .

Existence and uniqueness of the weak solution of (5) is known. Let us remark, that there exists
some distribution P ∈ L2(Ω) such that

∇P = ∆u + f

in the distribution sense in Ω.

¤
Essential problems are:

• How does the smoothness of the weak solution (u,P) ∈ [W 1,2(Ω)]2 × L2(Ω) depends on
the size of the angle ωi, i.e., how regular is the weak solution?

• How depends the convergence rate of numerical methods on the regularity of the weak
solution (u,P)?



3 Partition of polygonal domain

By {Th}h∈(0,h0), h0 > 0, we denote the system of triangulations of Ω with usual regularity
properties from the finite element theory. Th is formed by a finite number of closed triangles (or
quadrilaterals) Ωe such that

Ω =
⋃

Ωe∈Th

Ωe.

If Ωe1 , Ωe2 ∈ Th, Ωe1 6= Ωe2 , then either

Ωe1 ∩ Ωe2 = ∅

or
Ωe1 ∩ Ωe2 is a common vertex of Ωe1 , Ωe2

or
Ωe1 ∩ Ωe2 is a common side of Ωe1 ,Ωe2 .

Denote by he the diameter of Ωe and h = maxΩe∈Th
he.

Let us assume that Th is regular (see [3], [7]), i.e., there exists a constant C > 0 such that

meas Ωe ≥ Ch2
Ωe

,

for any Th and any Ωe ∈ Th, where hΩe is diam Ωe.

4 Interpolation error

Consider now a nonempty finite dimensional subspace Vh ⊂ V . Let Vh be a finite element space
of piecewise polynomial shape functions of a degree n = k − 1 such that

lim
h→0

inf
vh∈Vh

‖u− vh‖[W 1,2(Ω)]2 = 0.

Denote by Ih an interpolation operator, i.e., linear continuous operator such that Ih : V → Vh ⊂
V , Ih(vh) = vh for all vh ∈ Vh. In [3] and [8] have been studied approximation error estimates
locally in each element. We state here the results and refer to [3], [8] for more details.
Regular partition implies the quality of the approximation Ihu of u:

The following local approximation property holds for every u ∈ [Wm,p(Ω)]2, m ≤ k, and
Ωe ∈ Th, provided [Wm,p(Ω)]2 ⊂ [W l,q(Ω)]2, 0 ≤ l ≤ m, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞,

‖u− Ihu‖[W l,q(Ωe)]2 ≤ ch
m−l−2

�
1
p
− 1

q

�
‖∇mu‖[Lp(Ωe)]2 . (6)

Let us now assume the general case Vh ⊂ [W l,q(Ω)]2. The following inverse inequality holds
for all vh ∈ Vh (see [8])

‖∇lvh‖[Lq(Ωe)]2 ≤ ch
2
�

1
q
− 1

q1

�
‖∇lvh‖[Lq1 (Ωe)]2 (7)

for every Ωe ∈ Th, 1 ≤ q1 ≤ q ≤ ∞, Ω ⊂ R2.

The relations (6) and (7) allows us to derive the global error estimates in domain Ω of FEM
approximation in dependence on the regularity of the weak solution (u,P) ∈ [W 1,2(Ω)]2×L2(Ω).



5 Regularity of the weak solution near corners

Regularity of the Stokes flows was studied by many authors for a lot of examples with different
boundary conditions (see [2], [6], [9]). We give shortly the ideas and the results and refer to
presented publications.

In order to get regularity results of the weak solution (u,P) ∈ [W 1,2(Ω)]2 × L2(Ω) near
corner points we consider the weak solution from weighted Sobolev spaces instead of usual
Sobolev spaces. The weighted Sobolev spaces are defined as follows (see [8])

Vk,p(Ω, β) =





u;


 ∑

|α|≤k

∫

Ω
|Dαu(x)|p|x− 0|(β−k+|α|)pdx




1
p

< ∞





,

where β is arbitrary real number, k ≥ 0.

¤

It was proved by V.A.Kondra’tev (see [5]) that

(u,P) ∈ [V2,2(Ω, 1 + δ)]2 × V1,2(Ω, 1 + δ)

for a arbitrary small positive real number δ. The weak solution (u,P) ∈ [V2,2(Ω, 1 + δ)]2 ×
V1,2(Ω, 1 + δ) can be investigated as a strong solution of (1)–(4). We describe the standard
procedure which was developed by V.-A. Kondra’tev [5] and further developed by A.-M. Sändig
and A. Kufner in [8] and applied in [2] to the mixed problem for the Stokes system in the
following steps:

• By ”localization principle” we restrict (multiplying the Stokes system (1)–(4) by cut off
function) our boundary value problem to a neighborhood of a corner point Oi and consider
the ”modified problem” in infinite cone Ki.

• Using polar coordinates (r, ω) and the substitution r = eτ and applying the complex
Fourier transform with respect to τ we get the boundary value problem for the system of
ordinary differential equations depending on a complex parameter λ.

• The regularity results follows from asymptotic expansion of the solution in dependence of
the distribution of the eigenvalues λ.

Localization principle makes possible to investigate other cases of polygonal domains with
many variations of different boundary conditions (see Fig. 2).

Fig. 2: Other cases of polygonal domains with different variations of boundary conditions.
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Let us denote by ωDN the maximal angle from the set of all angles corresponding to the
corner points on the boundary, where boundary conditions change their type.
Analogously, let us denote by ωDD−NN , the maximal angle of the remaining angles (the same
type boundary conditions on the both adjacent sides of the corresponding corner point). If
there is not corner point of such type or ωDD−NN < π, we set strongly ωDD−NN = π, i.e.,
ωDD−NN = π is the minimal value.

For regularity of the weak solution (u,P) holds the following proposition (according to re-
sults obtained in [2]):

Theorem 2 If the strip µ ≤ Im λ < ε, where µ = δ − 1 with arbitrary small ε > 0, is free of
zeros of the equation (see Fig. 1)

DDN (λ) = (iλ)2 sin2[ωDN ]− cos2[(iλ)ωDN ] = 0, (8)

as well the equation (see Fig. 2)

DDD−NN (λ) = (iλ)2 sin2[ωDD−NN ]− sin2[(iλ)ωDD−NN ] = 0, (9)

then
(u,P) ∈ [V2,2(Ω, δ)]2 × V1,2(Ω, δ) (10)

and the following estimate holds

‖u‖[V2,2(Ω,δ)]2 + ‖P‖V1,2(Ω,δ) ≤ C‖f‖[L2(Ω)]2 . (11)

Fig. 3: DDN (λ) = 0. Fig. 4: DDD−NN (λ) = 0.

6 FEM error analysis

6.1 Finite element aproximation

The finite dimensional subspace Vh ⊂ V is the space of continuous functions uh (defined on Ω)

uh =
(

∂ψh

∂x2
,−∂ψh

∂x1

)
,



where ψh ∈ Xh. For precisely definition of the space Xh see [14]. It is clear that div uh = 0. This
internal aproximation of V is stable and convergent provided h belongs to a regular triangulation
Th of Ω.

Now we are able to pronounce the aproximation of the Stokes problem (5). The problem to
find uh ∈ Vh such that ((

uh, vh

))
V

=
((

f , vh

))
H

∀vh ∈ Vh, (12)

has uniquely determined solution (see [14]). uh is called the finite element solution (aproxima-
tion).
We have pronounced, that

((
. , .

))
H

is scalar product in H. From (5) and (12) follows the
orthogonality relation ((

u− uh, vh

))
V

= 0 ∀vh ∈ Vh. (13)

Further, we get for all vh ∈ Vh

‖u− uh‖2
V =

((
u− uh, u− uh

))
V

=
((

u− uh, u− vh

))
V

+
((

u− uh, vh − uh

))
V

=
((

u− uh, u− vh

))
V

, (14)

since vh − uh ∈ Vh. From (14) and Schwartz inequality we get

‖u− uh‖V ≤ ‖u− vh‖V ∀vh ∈ Vh (15)

and

‖u− uh‖V = inf
vh∈Vh

‖u− vh‖V . (16)

Let Ih be a linear continuous interpolation operator Ih : V → Vh ⊂ V such that Ih(vh) = vh

(see section 4). If uh 6= vh on a set with a positive measure, then

‖u− uh‖V = inf
vh∈Vh

‖u− vh‖V < ‖u− Ihu‖V . (17)
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It is well known that there exists P ∈ L2(Ω) which satisfy (1) in distribution sense. Let Lh

be the finite dimensional subspace of L2(Ω). We can introduce the discrete pressure Ph ∈ Lh.
Denote by Wh the finite dimensional subspace of W =

{
Φ ∈ [W 1,2(Ω)]2, Φ = 0 on Γ1

}
. This

function Ph is such that
((

uh, vh

))
V
− ((Ph, div vh))H =

((
f , vh

))
H

∀vh ∈ Wh. (18)

Further ((
u, Φ

))
V
− ((P, div Φ))H =

((
f ,Φ

))
H

∀Φ ∈ W. (19)

Since Wh ⊂ W we get
((

u− uh, vh

))
V
− ((P − Ph,div vh))H = 0 ∀vh ∈ Wh. (20)

Let wh ∈ Wh satisfy div wh = P − Ph. Such wh exists (see [1]). Then

‖P − Ph‖2
H =

((
u− uh, wh

))
V
≤ ‖u− uh‖V ‖P − Ph‖H

and finally
‖P − Ph‖H ≤ inf

vh∈Vh

‖u− vh‖V . (21)



6.2 Main result

Theorem 3 Let Ω be a polygonal domain in R2 with the set K of singular boundary (corner)
points. Let Th be a family of partitions of Ω as defined in section 3. Let the strip µ ≤ Im λ < ε,
where µ = δ − 1 with arbitrary small ε > 0, is free of zeros of the equations (8) and (9) in the
sense of Theorem 2. Then the finite element error can be estimated by

‖u− uh‖[W 1,2(Ω)]2 + ‖P − Ph‖L2(Ω) ≤ Ch1−δ‖f‖L2(Ω), (22)

i.e.
‖u− uh‖[W 1,2(Ω)]2 + ‖P − Ph‖L2(Ω) = O(h1−δ). (23)

Proof: From (17) it follows that

‖u− uh‖2
[W 1,2(Ω)]2 < ‖u− Ihu‖2

[W 1,2(Ω)]2 =
∑

Ωe∈Th

‖u− Ihu‖2
[W 1,2(Ωe)]2

. (24)

We split the last term and estimate it in the following way:

‖u− Ihu‖2
[W 1,2(Ωe)]2

≤ 2‖u‖2
[W 1,2(Ωe)]2

+ 2‖Ihu‖2
[W 1,2(Ωe)]2

≤ 2‖r2−δrδ−2u‖2
[L2(Ωe)]2

+ 2‖r1−δrδ−1∇u‖2
[L2(Ωe)]2

+ 2Ch−2
e ‖Ihu‖2

[L2(Ωe)]2

≤ 2Ch2(2−δ)
e ‖rδ−2u‖2

[L2(Ωe)]2
+ 2Ch2(1−δ)

e ‖rδ−1∇u‖2
[L2(Ωe)]2

+2Ch−4
e ‖Ihu‖2

[L2(Ω′)]2

≤ 2Ch2(1−δ)
e

(
‖rδ−2u‖2

[L2(Ωe)]2
+ ‖rδ−1∇u‖2

[L2(Ωe)]2

)
+ 2Ch−4

e ‖Ihu‖2
[C(Ω′)]2

≤ 2Ch2(1−δ)
e ‖u‖2

[V2,2(Ωe,δ)]2 + 2Ch−4
e ‖u‖2

[C(Ω′)]2 (25)

where we have used the inverse inequality (7) in the form

‖Ihu‖[W 1,2(Ωe)]2 ≤ Ch−1
e ‖Ihu‖[L2(Ωe)]2

which is useful for our case. Remark, that the embedding

V2,2(Ω, δ) ↪→ C(Ω)

holds for every δ ≥ 0. Then the last term in (25) we can estimate by

2Ch−4
e ‖u‖2

[C(Ω′)]2 ≤ 2Ch−4
e ‖u‖2

[V2,2(Ω′,δ)]2 ≤ 2Ch−4
e h2(3−δ)

e ‖u‖2
[V2,2(Ωe,δ)]2

≤ 2Ch2(1−δ)
e ‖u‖2

[V2,2(Ωe,δ)]2 . (26)

From the estimates (25) and (26) we conclude

‖u− Ihu‖[W 1,2(Ωe)]2 ≤ Ch1−δ
e ‖u‖[V2,2(Ωe,δ)]2 .

Together with (11), (17) and (21) we get (22), the proof is complete.

¤



7 Conclusions

In this paper, a stationary Stokes problem equipped with mixed boundary conditions in polyg-
onal domain have been analyzed. The regularity results, which are presented, are important
for an error analysis of numerical methods, i.e., the regularity of the weak solution has a great
influence over the rates of convergence for finite element methods. The main result is the proof
of error estimate for finite element approximation of the weak solution in polygonal domain.
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