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Abstract: This paper links up the papers [1], [2], [3], [4], [5], [7] and [11]. The hyperoperation
on partially-ordered sets is introduced. It is proved that partial ordered sets with such hy-
peroperation form semihypergroups. Further, the relation of equivalence and also congruence
is studied at the end of the first part. The second part is applied to the studies of a special
congruence and the third part deals with distinguishing subsets on the partial ordered semihy-
pergroups. The fourth part contains some examples, which describe the studied operations and
relations on a concrete partial ordered set.
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1. The Leading Article

1.1 Definition A hypergroupoid (or a multigroupoid) is a pair ( M, ◦) where M
is a nonempty set and ◦ : M × M → P∗(M) is a binary hyperoperation called also a
multioperation. (P∗(M) is the system of all nonempty subsets of M).
A semihypergroup is an associative hypergroupoid, i.e. hypergroupoid satisfying the
equality (a ◦ b) ◦ c = a ◦ ( b ◦ c) for every triple a, b, c ∈ M .

1.2 Introduction we denote by M a partially ordered set M with the ordering ≤
with the greatest element I which will be inscribed in the next part of this article with
M = (M,≤, I)

1.3 Definition By the length of a chain consisting of r + 1 elements that is of the
form

x0 −≺ x1 −≺ x2 −≺ . . . −≺ xr [x0, xr]

(where the notation xi −≺ xi+1 means that the element xi is covered by the element xi+1

- see [12]) we mean the non-negative number r. We define the length of a partial ordered
set (M = (M,≤, I) as

max{rj | ri, j ∈ J as the lengths of chains in M}.
(This definition is opposite to the definition of the length of ordered set in [12]). We shall

1



devote attention to partially ordered sets of finite length.

1.4 Definition We introduce for every element u ∈ M a subset U ⊆ M as follows:
U = {ui | ui ≥ u} and on M = (M,≤, I) we define for arbitrary x, y ∈ M the binary
hyperoperation ◦ as follows:

x ◦ y = {min(X ∩ Y )}.
We denote then the set M with such defined binary operation with M = ( M ≤, ◦, I).

1.5 Definition - Remark We introduce the following very important concept. A
subset Di of M = ( M ≤, ◦, I) is called dual ideal of M if Di satisfies the following
condition:

For x, y ∈ Di the relation x ◦ y ⊂ Di holds.

The subset U defined in 1.4 is the dual ideal of the element u ∈M = ( M ≤, ◦, I).

1.6 Lemma The hyperoperation of multiplication ◦ on (M = ( M ≤, ◦, I) is idem-
potent.

Proof. It is obvious that X ∩X = X and hence min(X ∩X) = minX. Hence we receive
x ◦ x = {x}.

1.7 Lemma The binary hyperoperation ◦ on M = ( M ≤, ◦, I) is commutative.

Proof. The proposition follows directly from the definition of binary hyperoperation ◦.
We have X ∩ Y = Y ∩X and hence {min(X ∩ Y )} = {min(Y ∩X)}.

1.8 Theorem M = ( M,≤, ◦, I) is a commutative hypergroupoid.

Proof. The theorem follows directly from 1.6 and 1.7.

1.9 Theorem Every upper-ideal of M = ( M ≤, I) is identical with the dual-ideal of
the commutative hypergroupoid. M = ( M ≤, ◦, I).

Proof. The proof follows from the definition of the operation ◦ for the products a ◦ a and
x ◦ y, where a, x, y ∈ M, a < x, a < y.

1.10 Remark The binary hyperoperation ◦ defined on partially ordered sets is not
associative. It is obvious from the following example.
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1.11 Example
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Figure 1

We show in this example that the hyperoperation ◦ given on ordered set on Figure 1
is not associative. We prove that (x ◦ y) ◦ z 6= x ◦ (y ◦ z). We denote x ◦ y as W . ¿From
the definition of the hyperoperation ◦ the set W = {w1, w2, w3}.

W ◦ z = {w1 ◦ z} ∪ {w2 ◦ z} ∪ {w1 ◦ z} = {a} ∪ {a} ∪ {w3} = {a. w3}.
Similarly we denote y ◦ z as U . Then U = {w3} and x ◦ U = x ◦ w3 = {w3}. Hence we
proved Remark 1.10.

2. Congruences on ordered semihypergroups with the least
element

2.1 Introduction In this chapter we suppose the ordered hypergroupoids with the
least and the greatest elements, M = ( M ≤, ◦, 0, I).

2.2 Definition A congruence on an ordered hypergroupoid M is called a relation of
equivalence ρ on M such that for every quaternion of elements a1, a2, b1, b2 ∈ M for which
a1ρ b1, a2ρ b2 the following holds: For every x ∈ a1◦a2 there exists y ∈ b1◦b2 and for every
y′ ∈ b1◦b2 there exists x′ ∈ a1◦a2 with the property xρ y and x′ρ y′. See [4] p.151 and [10].

2.3 Definition - Remark Let ρ be a congruence relation on hypergroupoid M. The
symbol M/ρ denotes a set of classes of the congruence ρ. We define binary operation �
onto this set as follows. We assign to the double of classes ρ(a), ρ(b) ∈ M/ρ the prod-
uct � as the class ρ(a) � ρ(b) = ρ(a ◦ b). The class ρ(a ◦ b) does not depend onto the
choice of the elements a, b ∈ M but only onto the classes ρ(a), ρ(b). Hence we have for
a
′ ∈ ρ(a), b

′ ∈ ρ(b) the equation ρ(a ◦ b) = ρ(a
′ ◦ b

′
).

2.4 Definition Let M = ( M,≤, ◦, I) be an ordered hypergroupoid, L a subset of M .
We say that the elements x, y from M are in the relation Ξ(M,L) on ordered hypergroupoid
M iff x ◦ u ⊆ L is equivalent to y ◦ u ⊆ L for all elements u ∈ M .
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2.5 Theorem Let M = ( M,≤, ◦, 0, I) be an ordered hypergroupoid. Let L ⊆ M .
Then Ξ(M,L) be a congruence relation on M. If x ∈ L and the pair (x, y) ∈ Ξ(M,L) then
y ∈ L.

Proof. From the definition of the relation Ξ(M,L) follows that it is an equivalence relation.
It is obvious that the relation Ξ(M,L) is reflexive and commutative. We prove the tran-
sitivity. Let be x, y, z, u ∈ M . The relation (x ◦ u) Ξ(M,L) (y ◦ u) implies x ◦ u ⊆ L is
equivalent to y ◦ u ⊆ L. Similarly (y ◦ u) Ξ(M,L) (z ◦ u) implies y ◦ u ⊆ L is equivalent to
z ◦ u ⊆ L. Hence (x ◦ u) Ξ(M,L) (z ◦ u).
If x ∈ L and (x, y) ∈ Ξ(M,L) then we have x ◦ 0 = x and at the same time y ◦ 0 = y

2.6 Remark We show that the congruence Ξ(M,L) satisfies the definition 2.2.

Proof. We put a1 = x, b1 = y, a2 = v = b2. Let x Ξ(M,L) y, evidently u Ξ(M,L) u and
hence (x ◦ u) Ξ(M,L) (y ◦ u) that means x ◦ u ⊆ L is equivalent to y ◦ u ⊆ L. The sets
x ◦ u, y ◦ u are not void (M has the maximal element) and for every element x′ ∈ x ◦ u
there exists y′ ∈ y ◦ u such that x′ Ξ(M,L) y′. The operation ◦ is commutative therefore
Ξ(M,L) satisfies the definition 2.2.

2.6 Corollary Let M = ( M,≤, ◦, 0, I) be an ordered hypergroupoid, L ⊆ M its
subset, f canonical surjection of M onto M/Ξ(M,L). Then f−1{f(L)} = L.

Proof. Evidently L ⊆ f−1{f(L)} = L. Let us consider x ∈ f−1{f(L)}. Hence f(x) ∈
f(L) which implies the existence of the element y ∈ L with the property f(x) f(y),
which is equivalent to (x, y) ∈ Ξ(M,L). With respect to 2.5 we have x ∈ L and hence
f−1{f(L)} ⊆ L.

2.7 Corollary Let M = ( M,≤, ◦, 0, I) be an ordered hypergroupoid, L ⊆ M its
subset. Then L =

⋃
X where X ∈ M/Ξ(M,L), X ∩ L 6= Ø.

2.8 Lemma Let M = ( M,≤, ◦, 0, I) be an ordered hypergroupoid. Let Θ be a
congruence relation onto M and

L =
⋃
i∈I

Hi,

where Hi ∈ M/Θ for i ∈ I. Then Θ ⊆ Ξ(M,L).

Proof. Let xΘy For all u ∈ M x◦u Θ y◦u. From the relation L =
⋃

i∈I Hi simultaneously
x ◦ u, y ◦ u ⊆ L or x ◦ u, y ◦ u 6⊆ L. Hence (x, y) ∈ Ξ(M,L).

2.9 Lemma Let M = ( M,≤, ◦, 0, I) be an ordered hypergroupoid. Let Θ be a
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congruence relation onto M and

L =
⋃
i∈I

Hi ⊆ M,

where Hi ∈ M/Θ for i ∈ I. Then ⋂
i∈I

Ξ(M,Hi) ⊆ Ξ(M,L)

.

Proof. Let
(x, y) ∈

⋂
i∈I

Ξ(M,Hi), x, y ∈ M

. Then (x, y) ∈ Ξ(M,Hi) for all i ∈ I. It means that the products x ◦ u, y ◦ u lapse either
into Hi or into M −Hi for all u ∈ M and all i ∈ I. If x ◦ u, y ◦ u ⊆ M −Hi, then either
simultaneously

x ◦ u, y ◦ u ⊆ M −
⋃
i∈I

Hi

or simultaneously x◦u, y◦u ⊆ Hj where j ∈ I, j 6= i. In the opposite case (x, y) ∈ Ξ(M,Hj)

holds and it is a contradiction with the relation (x, y) ∈ Ξ(M,Hi) for all i ∈ I.
Thus x ◦ u, y ◦ u lapse into ⋃

i∈I

Hi = L

or into the complement M − L. Hence (x, y) ∈ Ξ(M,L).

2.10 Lemma Let M = ( M,≤, ◦, 0, I) be an ordered hypergroupoid, Θ congruence
relation on M and H1, H2 ∈ M/θ and let H2 ∈ M/Ξ(M,H1). Then Ξ(M,H1) ⊆ Ξ(M,H2).

Proof. Let x, y, u ∈ M be such that (x, y) ∈ Ξ(M,H1) and x ◦ u ⊆ H2. By reason that
H2 ∈ M/Ξ(M,H1) the relation y ◦ u ⊆ H2 holds true. Analogously from y ◦ u ⊆ H2 follows
x ◦ u ⊆ H2. Hence x ◦ u ⊆ H2 is equivalent to y ◦ u ⊆ H2 for all u ∈ M and hence we
have (x, y) ∈ Ξ(M,H2).

2.11 Definition Let M = ( M,≤, ◦, 0, I) be an ordered hypergroupoid, R ⊆ M non
void set. We call the set R normal complex if for arbitrary u ∈ M and arbitrary x, y ∈ R
the relation x ◦ u ⊆ R implies y ◦ u ⊆ R.

2.12 Theorem Let M = ( M,≤, ◦, 0, I) be an ordered hypergroupoid, R subset of
M . The following affirmations are equivalent:

A) R is normal complex.
B) There exists homomorphism ϕ of ordered semihypergroup M such that R
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is full origin of one element for homomorphism ϕ.

Proof. Proposition of the theorem follows from Theorem 4.6 [10],p. 377.

2.13 Definition Let M = ( M,≤, ◦, 0, I) be an ordered hypergroupoid, Θ a congru-
ence relation on M,

L =
⋃
i∈I

HI ⊆ M, Hi ∈ M/Θ.

We say that {Hi}i ∈ I satisfies the condition C if there does not exist the set J ⊂ I such
that card J > 1 and ⋃

i∈J

Hi

is normal complex in M.

2.14 Lemma Let M = ( M,≤, ◦, 0, I) be an ordered hypergroupoid, Θ a congruence
relation on M,

L =
⋃
i∈I

HI ⊆ M, Hi ∈ M/Θ.

Let {Hi}i ∈ I satisfy the condition C. Then Hi ∈ M/Ξ(M,L) for every i ∈ I.

Proof. The set L is a union of classes of the congruence Ξ(M,L) according to 2.7. Using
Lemma 2.8 we receive that Ξ(M,L) without the class X of the element x ∈ L is a union
of the set of classes modulo Θ from L. Since X is normal complex (see 2.12), the set of
classes modulo Θ has with respect to the condition C just one element. Hence Ξ(M,L)

minus the class X ⊆ L blends with the class of the congruence Θ containing the element x.

2.15 Lemma Let M = ( M,≤, ◦, 0, I) be an ordered hypergroupoid, Θ a congruence
relation on M,

L =
⋃
i∈I

Hi ⊆ M, Hi ∈ M/Θ.

and let {Hi}i∈I satisfies the condition C. Then Ξ(M,L) = Ξ(M, ∪i∈IHi) ⊆ Ξ(M,Hi) for every
i ∈ I.

Proof. Let (x, y) ∈ Ξ(M,L). If for all u ∈ M x ◦ u, y ◦ u ⊆ L then x ◦ u, y ◦ u lie in the
same class Hi. This follows from 2.14 and from the stability of congruence. The sets x◦u
and y ◦u lapse either into the same class Hi or into complement M −L of the set L for all
u ∈ M and (x, y) ∈ Ξ(M,L). Hence for al (x, y) ∈ Ξ(M,L) is also (x, y) ∈ Ξ(M,Hi) for all i ∈ I.

2.16 Theorem Let M = ( M,≤, ◦, 0, I) be an ordered semihypergroup, Θ a congru-
ence relation on M,

L =
⋃
i∈I

Hi ⊆ M, Hi ∈ M/Θ.
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and let {Hi}i∈I satisfies the condition C. Then⋂
i∈I

Ξ(M,Hi) = Ξ(M,L)

.

Proof. The Proposition follows from 2.9 and 2.15.

2.17 Theorem Let M = ( M,≤, ◦, 0, I) be an ordered hypergroupoid, Θ a congru-
ence relation on M, H1, H2 ∈ M/Θ. The following propositions are equivalent:

A) H1 ∈ M/Ξ(M,H2) H2 ∈ M/Ξ(M,H1)

B) Ξ(M,H1) = Ξ(M,H2)

C) Ξ(M,H1) ⊆ Ξ(M,H1∪H2) and Ξ(M,H2) ⊆ Ξ(M,H1∪H2)

Proof. Let A) hold. Then 2.13 implies B).
We prove that B) implies C). We receive from the lemma 2.12 Ξ(M,H1) ∩ Ξ(M,H2) ⊆
Ξ(M,H1∪H2) and from the assumption B) follows Ξ(M,H1) = Ξ(M,H2) = Ξ(M,H1) ∩ Ξ(M,H2)

and hence C) holds true.
It remains to be proven that C) implies B). We divide this par of the proof onto two parts.
α ) Let T ∈ M/Ξ(M,H1∪H2) and x, y ∈ T . We show that either simultaneously (x, y) ∈
Ξ(M,H1) and (x, y) ∈ Ξ(M,H2) or simultaneously (x, y) 6∈ Ξ(M,H1) and (x, y) 6∈ Ξ(M,H2).
¿From the relation (x, y) ∈ Ξ(M,H1∪H2) follows that x ◦ u ⊆ H1 ∪ H2 is equivalent to
y ◦ u ⊆ H1 ∪H2 for all u ∈ M .
We call the element u, u ∈ M as an element of the type one, if simultaneously x ◦ u ⊆
H1, y ◦ u ⊆ H1, or simultaneously x ◦ u ⊆ H2, y ◦ u ⊆ H2,.
We call the element u, u ∈ M as an element of the type two, if simultaneously x ◦ u 6⊆
H1 ∪H2, y ◦ u 6⊆ H1 ∪H2.
We call the element u, u ∈ M as an element of the type three, if either simultaneously
x ◦ u ⊆ H1, y ◦ u ⊆ H2 or simultaneously x ◦ u ⊆ H2, y ◦ u ⊆ H1.
This way we distinguished all the elements u ∈ M into three families. If no element is of
the type three then simultaneously (x, y) ∈ Ξ(M,H1) and (x, y) ∈ Ξ(M,H2). If there exists
at least one element of the type three then (x, y) 6∈ Ξ(M,H1) and (x, y) 6∈ Ξ(M,H2). β. If
x, y ∈ M are arbitrary elements with the property (x, y) ∈ Ξ(M,H1) then there exists such
a class T ∈M/Ξ(M,H1∪H2) for which according to C) x, y ∈ T holds true. From α follows
(x, y) ∈ Ξ(M,H2). Hence Ξ(M,H1) ⊆ Ξ(M,H2) and similarly Ξ(M,H2) ⊆ Ξ(M,H1). We have
proved that C) implies B).
In the last part of proof we show that B) implies A). With respect to the corollary 2.10 the
set H1 is a union of Ξ(M,H1) classes. Similarly H2 is a union of Ξ(M,H2) classes. From the
lemma 2.11 with assumption that H1, H2 are Theta-classes we receive H1 ∈ M/Ξ(M,H1)

and H2 ∈ M/Ξ(M,H2). That settles the proof.
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3. Distinguishing subsets of hypergroupoids

3.1 Definition We say that the subset L of M distinguishes the hypergroupoid
M = ( M ≤, ◦, I) if for every pair (x, y) ∈ M, x 6= y there exists an element u ∈ M such
that

x ◦ u = {si | i ∈ I} ⊆ L and y ◦ u = {tj | j ∈ J} 6⊂ L
or

x ◦ u = {si | i ∈ I} 6⊆ L and y ◦ u = {tj | j ∈ J} ⊂ L

3.2 Definition By the depth d(x) of the element x of the partially ordered set
abounded upper is meant the minimum of the set of all lengths of the chains among the
elements x and I it is min{ lengths of all chains [x, I]} (d(I) = 0). We say that the partial
ordered set M is uniform when for every element x ∈ M all chains among the elements
x and I have the same length.

3.3 Definition The subset D ⊂ N for which elements z holds d(z) = 1 is called the
set of dualatoms.

3.4 Agreement Hereafter we suppose that the hypergroupoid M = ( M ≤, ◦, I) has
no meet irreducible elements except for the set of dual atoms and that the ordered set M
is uniform.

3.5 Theorem Let a hypergroupoid M = ( M ≤, ◦, I) of the length N be given and
every element x ∈ M with d(x) = n be covered by all elements z ∈ M with d(z) = n− 1.
Then the subset L ⊂ M consisting from the elements z ∈ M which have d(z) = 0 and
d(z) = 2 . k | k = 1, 2 . . .q distinguishes the hypergroupoid M.

Proof. We prove for arbitrary pair (x, y) ∈ N × N , x 6= y the existence of an element u
for which all elements of multioperation x◦u are in L and y ◦u are not in L or conversely.
Let x 6= y, x, y ∈ N .

1)Let d(x) = d(y). It is sufficient to put v = x end we have x ◦ x = x and the whole
set y ◦ x has d(y ◦ x) = d(x) + 1. Hence the element x is in L and the set y ◦ x is not in
L or conversely.

2)Let d(x) and d(y) are both even or both odd. Without loss of generally we can
suppose that both depths are even and d(x) < d(y) Then there exists an element u which
covers the element x such that d(u) = d(x) + 1 and d(u) < d(y). Hence x ◦ u = u and
y ◦ u = y and d(u) = d(x) + 1 Such the product y ◦ u is an element of L and x ◦ u is not
in L.

3) Let one value of depths of elements x, y be even the second one odd. It is obvious
that that d(x) < d(y) or d(y) < d(x). Let the first case occur. Then x ◦ x = x and
y ◦ x = y. With respect to the assumption in part 3 of the proof the product x ◦ x does
not lie in L and y ◦ x lies in L. Such the role of u plays x.
Linking 1), 2) and 3) we prove the theorem.
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3.6 Theorem Let a uniform hypergroupoid M = ( M ≤, ◦, I) of the length N be
given. Then there exists at least one distinguishing subset L ⊂ M of M.

Proof. We do the construction of a distinguishing subset. We begin at the element with
the smallest depth it is at I and we put L0 = {I}. The following elements are elements of
the depth 1, these are dual atoms and we denote he set of all dual atoms by D. We have for
every pair (x, y) ∈ {D∪I}×{D∪I}, x 6= y, x 6= I products x◦x = x and y◦x = I. The role
of the element u in the definition 2.2 acts the element x and L0 = I distinguishes the subset
{D ∪ I}. Let all pairs (x, y) ∈ M ×M, x 6= y, d(x) = k− i, d(y) = k− j, i, j = 0, 1, ..., k
are mutually distinguished by L0 ⊂ M . Such k exists and k ≤ 1
Let (x, y), x 6= y, d(x) = k, d(y) = k + 1,
1) Let us suppose that y < x and that there exist u such that u �−y and u ‖ x. Then
y ◦ u = u where d(u) = k and x ◦ u = {zq | q ∈ Q} and d(zq) = k0 < k.. Every pair
(u, zq) | q ∈ Q for which components their depths are smaller or equal to k is distinguished
by L0 it is there exists v such that u ◦ v ∈ L0 and simultaneously zq ◦ v 6∈ L0 or u ◦ v 6∈ L0

and simultaneously zq ◦ v ∈ L0 for all q ∈ Q
2) Let (x, y) be a pair of different elements for which d(x) = k + 1, d(y) = k + 1 and let
there exist an element u with the property u �−y. Then y ◦ u = u where d(u) = k and
x ◦ u = {zq | q ∈ Q} where simultaneously d(zq) = k0 < k. and we act alike as in 1.
3) Let for all doubles (x, y), x 6= y, d(x) = d(y)− k + 1 both elements x and y be lying
under every of elements of the set of dual elements D. We denote the set of these elements
as {ts | s ∈ S} and we define a new distinguishing subset Lk+1 = {I} ∪ {ts | s ∈ S}
where the set S is the index set for which all indexes s the depth d(ts) = k + 1. This set
distinguishes all pairs (x, y) satisfying the conditions in 1, in 2 and the conditions of the
part 3 of the proof. It is sufficient to take as the element u one from the elements x and
y, for example x and we have x ◦ x = x simultaneously x ∈ Lk+1 and y ◦ x = {zq | q ∈ Q}
where 1 > d(zq) ≥ k for all indexes q ∈ Q. We see that all pairs (x, y) with the depth of
their elements smaller than k + 1 can be distinguished by Lk+1 = {I} ∪ {ts | s ∈ S}
4) We denote the set of elements which are covered by the elements of the set ∪ {ts | s ∈ S}
by P and we call it’s elements predecessors. In the next steps of the construction of the
distinguishing set we do the considerations obtained in the parts 1, 2 and 3 with that
difference that we are working not only with the set D bat wit the set P too. In this way
we can receive next sets of predecessors and the algorithm of the construction repeats
with growing set of sets of predecessors.

3.7 Theorem Let a hypergroupoid M = ( M ≤, ◦, I) of the length N be given. Then
there exists at least one distinguishing subset L ⊂ M of M.

Proof. We do the construction of a distinguishing subset similarly as in the Theorem 2.8.
1) All dual atoms are distinguished by the set L0 = {I}.
2) We suppose that all pairs (x, y) ∈ M × M for which d(x) ≤ k0, d(y) ≤ k0 are
distinguished by L0. Such k0 exists and k0 ≥ 1 which follows from the first part of this
proof.
3) Let (x, y) ∈ M ×M be such that d(x) ≤ k0, d(y) = k0 + 1.
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a) If x ‖ y then it is sufficient to put u = x and we have x ◦ u = x ◦ x = x and
y ◦ u = {zq | q ∈ Q} where d(zq) ≤ k0 for all q ∈ Q and such all pairs (x, zq), q ∈ Q are
according to the assumption 2 distinguished by L0 = {I}.

b) If x > y and if there exists an element u, u ‖ x with the property u �−y then
y ◦ u = u and x ◦ u = {zq | q ∈ Q where d(zq) ≤ k0 for all indexes q ∈ Q. All pairs (u, zq)
with given properties are distinguished by the subset L0 = {I}.

b1) If x > y and if such an u, u ‖ x with the property u �−y does not exist then we
define a new distinguishing subset. We union all elements y satisfying b1) with the subset
L0 = {I} and we have L1

k0 = L0 ∪ {y | d(y) = k0 + 1, y < x for ∀x, d(x) ≤ k0}. It is
obvious that the distinguishing of all pairs (x, y), d(x) ≤ k0, d(y) ≤ k0 will be preserved
as well pairs satisfying b). We show that the subset L1

k0 distinguishes all pairs satisfying
b−1. It is obvious that the element x does not lie in the subset L0. The element y was
assigned into the set L1

k0 Now it suffices to put u = y hence x ◦ u = x ◦ y = x and
y ◦ u = y ◦ y = y and the pair (x, y) is distinguished by L1

k0 .
c) We will study all pairs (x, y) for which d(x) ≤ k0, d(y) = k0 + 1 and x < y. If

there exists u such that u �−x and u ‖ y then x ◦ u = u, d(u) ≤ k0 and y ◦ u = {zq | q ∈
Q, D(zQ) ≤ k0} and all pairs (u, zq) are distinguished by L0 according to the assumption
2 of the proof.

c1) Let d(x) ≤ k0, d(y) = k0 + 1 and x < y. We suppose now, that such u as in c)
does not exist. We define a new distinguishing subset. We union all elements y satisfying
c1 with L1

k0 and we receive Lk0+1 = L1
k0 ∪ {y | d(y) = k0 + 1, x > y for ∀x, d(x) ≤ k0}.

All pairs (x, y) ∈ M ×M satisfying all conditions till c1 are distinguished by L1
k0 . Let

(x, y) ∈ M ×M satisfies c1. It is sufficient to put x as u and hence x ◦ u = x ◦ x = x and
y ◦ u = y ◦ x = y. Such x 6∈ Lk0+1 simultaneously y ∈ Lk0+1 and the pair (x, y) ∈ M ×M
is distinguished too.
The set of all pairs created from the set of all predecessors of the subset Lk0+1 can be by
this subset distinguished. We repeat for the following construction of the distinguishing
subset the algorithm aliquot to that one which is described in steps 2 and 3 of this proof
with only one difference that we suppose in the step 2 all pairs (x, y) ∈ M ×M for which
d(x) ≤ k1, d(y) ≤ k1 where k1 ≥ k0 + 1. The set M is finite hence after the finite steps of
applications of given algorithm we receive the distinguishing subset of the hypergroupoid
M .

3.8 Remark In the following fourth paragraph there will be as example 1. partial
ordered semihypergroup given. Hereafter some congruences will be shown and also an
example of distinguishing subsets will be created.

4. Examples

4.1 Example Let M be an underlying ordered set of the commutative hypergroupoid
M given by Fig.2, The hyperoperation ◦ is given in the Table 1 .
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4.2 Example Let M be an underlying partial ordered set of the commutative hyper-
groupoid M given by Fig.2. The hyperoperation ◦ is given in the Table 1.

Let L1 = {0, a, c, e} be a subset of M . Then Ξ(M,L1) is a congruence relation (see 2.5).

Let x, y ∈ L1then for u ∈ L1 x ◦ u, y ◦ u ∈ L1 and for u ∈ M − L1 = L2 x ◦ u, y ◦ u 6∈ L1

Let x, y ∈ L2 then for all u ∈ M x ◦ u, y ◦ u 6∈ L1.

The system of classes of the congruence relation Ξ(M,L2) is the same.

4.3 Example Let M be an underlying partial ordered set of the commutative hyper-
groupoid M given by Fig.2. The hyperoperation ◦ is given in the Table 1.
We define a subsets L1 ⊆ M such that L = {g, h, i, j, k, l} and L2 = {0, a, b, c, d, e, f, I}
then L1 and L2 distinguish the commutative hypergroupoid M.
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0
a
b
c
d
e
f
g
h
i
j
k
l
1

0 a b c d e f g h i j k l 1
0 a b c d e f g h i j k l 1
a a d,i e d e i,j g h i j k l 1
b d,i b f,g d g,i f g h i j k l 1
c e f,g c g,l e f g h i j k l 1
d d d g,l d g,l h g h l,k j k l 1
e e g,i l g,l l i,j g j,l i j k l 1
f i,j f f h i,j f j,k h i j k l 1
g g g g g g j,k g j k j k I I
h h h h h j,l h j h I j k I I
i i i i l,k i i k I i I k I I
j j j j j j j j j I j I I I
k k k k k k k k k k I k I I
l l l l l l l I l l I I l I
I I I I I I I I I I I I I I

Table 1 - multiplication ◦ on the hypergroupoid from 4.1.

Proof of 4.3. We prove the assertion of the example such that we define for every pair
(x, y) ∈ M ×M an element u ∈ M for which the condition from 3.1 is satisfied. We do
it with the aid of tables. The doubles and their distinguishing elements are given in the
following tables.

x,y u x◦u y◦u
0,a
0,b
0,c
0,d
0,e
0,f
0,g
0,h
0,i
0,j
0,k
0,l
0,I

f
e
d
f
d
d
l
k
j
k
j
j
j

h,i

g,i
h
h
g,l
h
I
I
I
I
I
I
I

e
e
d
f
d
d
l
k
j
k
j
j
j

a,b
a,c
a,d
a,e
a,f
a,g
a,h
a,i
a,j
a,k
a,l
a,I

f
d
e
d
d
e
k
j
k
j
j
j

h,i

d
e
d
d
e
k
j
k
j
j
j

f

h,g
g,l
g,l
h
g
I
I
I
I
I
I

x,y u x◦u y◦u x,y u x◦u y◦u
b,c
b,d
b,e
b,f
b,g
b,h
b,i
b,j
b,k
b,l
b,I

b
b
c
b
b
k
j
k
j
j
d

b

b
f,g
b
b
k
j
k
j
j
d

f

d
e
f
g
I
I
I
I
I
I
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x,y u x◦u y◦u
c,d
c,e
c,f
c,g
c,h
c,i
c,j
c,k
c,l
c,I

c
h
c
c
e
c
c
c
c
f

g,l

j,l
f
g
j,l
i
j
k
l
I

c
h
c
c
e
c
c
c
c
f

d,e
d,f
d,g
d,h
d,i
d,j
d,k
d,l
d,I

e
d
l
d
j
l
j
j
j

l

d
l
d
j
l
j
j
d

g,l

h
I
h
I
I
I
I
I

x,y u x◦u y◦u x,y u x◦u y◦u
e,f
e,g
e,h
e,i
e,j
e,k
e,l
e,I

e
e
h
j
k
j
j
e

e

e
j,l
j
k
j
j
e

i,j

g
h
I
I
I
I
I
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1994. Horńı Lipová, Czech Republic, September 4 - 12, 1994. Department of Algebra
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