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Example: structure of Ni-Al-Cr-Ta alloy (Institute of Physics of Materials, Brno)

In various engineering applications of the continuum mechanics the reliable analysis of be-
haviour of material samples, constructions, etc., cannot avoid information from the microstruc-
tural material analysis. Complex models “from nanoscale particles to terrestrial bodies” lead
to very expensive numerical calculations – it is nearly impossible to cover two (or even more)
scales by some unified family of decomposition to finite elements because the size of particles is
typically between micro- and millimeters, but the size of the whole sample or construction is in
meters. . . . On the other side, most results of the separate microscale analysis can be naturally
extended to the macroscale one only under very strong (often non-realistic) both physical and
geometrical assumptions (on symmetry, exact periodicity, etc.).

The aim of all two-scale (or even multi-scale) studies of problems from engineering me-
chanics is to bridge the gap between the micro- and macrostructural analysis and to optimize
the hardware and software requirements of numerical implementation of corresponding models.
Unfortunately, the term “two-scale problems” appears in at least two different senses in the lit-
erature. The first one emphasizes that two levels of not necessarily nested grids are considered
(often with no deeper analysis of microstructural phenomena), the second one makes use of the
two-scale homogenization theory, based on the careful definition of the two-scale convergence
(more general than the strong convergence, less general than the weak one). This paper tries to
demonstrate how both these approaches are able to be combined to guarantee similar results as
standard numerical (e. g. finite element) techniques.

To avoid technical difficulties, let us consider a domain Ω in the real Euclidean space R3 and
a subspace V of the Sobolev space W 1,2(Ω) containing W 1,2

0 (Ω) (some homogeneous Dirichlet



boundary conditions can be prescribed). Let Λ be some subdomain of Ω; in practice vol Ω �
vol Λ. Let us assume that the decomposition of Ω (well-known from the finite element theory)
generates finite-dimensional spaces Vh and the decomposition of Λ finite-dimensional spaces Vδ;
h and δ here are norms of such decompositions (for h � δ > 0 the notation Vh and Vδ cannot
be mismatched) and we expect Vδ → V and Vh → V as h, δ → 0 is some reasonable sense.

Let us consider some “external load” f ∈ V ∗ (V ∗ is a dual space to V , 〈., .〉 will denote the
duality between V and V ∗). Let us construct the bilinear form a from the formula

a(u, v) =
∫

Ω
Ã(x)∇u(x) · ∇v(x) dx

for every u, v ∈ V ; this is not quite easy because we do not know “homogenized material
characteristics” Ã on Ω properly – at least on Λ we have to obtain them by some homogenization
process (via ε → 0) from

aε(uε, v) =
∫

Ω
A(x, x/ε)∇uε(x) · ∇v(x) dx

where some “quasiperiodic material characteristics” A are prescribed in the Lebesgue space
L∞(Ω × R3) such that its values are Y -periodic in the second variable, Y is a unit cell in R3

and uε, v ∈ V again.
Our model elliptic problem is: find such u ∈ V that

a(u, v) = 〈f, v〉 for all v ∈ V .

Its numerical analysis is based on the following algorithm, started from some (e. g. macrocsale)
estimate u0 ≈ u with a real parameter ω:

1. find such wε
δ ∈ Vδ that

aε(wε
δ , vδ) = 〈f, vδ〉 − aε(u0, vδ) for all vδ ∈ Vδ ,

2. set u
1
2 = u0 + ωwε

δ ,
3. find such wh ∈ Vh that

a(wh, vh) = 〈f, vh〉 − a(u
1
2 , vh) for all vh ∈ Vh ,

4. set u1 = u
1
2 + ωwh,

etc. with shifted upper indices of u·. This algorithm creates a sequence {un}∞n=0.
Using the properties of orthogonal projections of the space Vhδ = Vh + Vδ into Vh and Vδ

in case 0 < ω < 2, the extension theorems in Sobolev spaces and the homogenization step
ε → 0, under rather general assumptions on the interpolation properties of Vh and Vδ in V (in
particular, under those from the famous Zlámal’s article On the finite element method (1968)) it
can be proved that a sequence of projections of {un}∞n=0 to V has really a limit u. The detailed
analysis on Λ can be done a posteriori with a finite positive ε.

The generalization of the presented algorithm to parabolic problems is based on the method
of discretization in time and the analysis of convergence properties of Rothe sequences. Its prac-
tically important application is the two-scale analysis of thermal insulation and accumulation
properties of building materials with a known porous structure.
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