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Abstract

One of principal research directions in computational mechanics is to describe and analyze
multi-scale systems and phenomena where at least one macro- and one microscale has to
be distinguished. Since such scales in realistic problems differ dramatically (often as
meters and micrometers), the standard mesh refinement technique, well-known from the
finite element analysis, is not available or leads to very slow and expensive calculations.
This paper demonstrates on a model boundary problem how the mathematical two-scale
convergence theory can help to bridge the gap between the macro- and microanalysis,
using certain special iterative algorithm, with rather weak requirements to the method
of interpolation. Some useful generalizations and references and comments to technical
applications are presented, too.

1 Macro- and microanalysis in computational mechanics

In various engineering applications of the continuum mechanics the reliable analysis of be-
haviour of material samples, constructions, etc., cannot avoid information from the microstruc-
tural material analysis. Complex models “from nano-scale particles to terrestrial bodies” (as
[19]) lead to very expensive numerical calculations – it is nearly impossible to cover two (or
even more) scales by some unified family of decomposition to finite elements because the size of
particles is typically between micro- and millimeters, but the size of the whole sample or con-
struction is in meters: Figure 1 shows the structure of some commonly used building materials,
including materials for special insulation layers, with various number, type, shape and size of
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pores (which is substantial, e. g., for the numerical analysis of moisture and heat transfer in
buildings). Figure 2 the structure of some advanced metal-based materials (important for the
study of heat treatment of alloys, phase transformations, etc.). On the other side, most results
of the separate microscale analysis can be naturally extended to the macroscale one only un-
der very strong (often non-realistic) both physical and geometrical assumptions (on symmetry,
exact periodicity, etc.).

gas concrete fire-clay brick

2 types of polyurethan-based insulation

foam polyethylen straw pannel Stramit

Figure 1: Structure of some porous building materials
(Laboratory of Building Physics, Faculty of Civil Engineering, Brno University of Technology)
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Ni-Al-Cr-Ta alloy Ni superalloy CMSX4

superaustenitic iron NICROFER Bi-Sn-Zn alloy

Figure 2: Structure of some advanced alloys
(Institute of Physics of Materials in Brno, Academy of Sciences of the Czech Republic)

The aim of all two-scale (or even multi-scale) studies of problems from engineering mechanics
is to bridge the gap between the micro- and macrostructural analysis and to optimize the
hardware and software requirements of numerical implementation of corresponding models.
Unfortunately, the term “two-scale problems” appears in at least two different senses in the
literature. The first one (referenced by i) here) emphasizes that two levels of not necessarily
nested grids are considered (often with no deeper analysis of microstructural phenomena), the
second one (referenced by ii) here) makes use of the two-scale homogenization theory, based on
the careful definition of the two-scale convergence (more general than the strong convergence,
less general than the weak one). This paper tries to demonstrate how both these approaches
are able to be combined to guarantee similar results as standard numerical (e. g.finite element)
techniques.
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The typical example of the original theoretical analysis of type i) is [5]; consequently in
[6] a family of iterative method is studied to solve second-order elliptic system with two-scale
data using two levels of grids (in the numerical example the Dirichlet problem for the Pois-
son equation). Another approach is presented in [23]: the aim is to prove good convergence
properties near corners of planar domains with complicated shapes which is the reason for the
construction of a two-scale grid (with very precise near-boundary triangular elements).

The fundamental definitions and lemmas of the theory ii) come from [20] and [1]. The
extensive overview of standard homogenization methods for periodic material structures, in-
cluding G-, H-, Γ- and two-scale convergence, with applications to linearized elasticity, heat
and wave equations, can be found in [2]. The two-scale convergence technique is applicable
even to strongly nonlinear elliptic problems (cf. [29]) and to rather general parabolic problems
(cf. [7]); such parabolic problems can be analyzed numerically as sequences of elliptic problems
with help of the method of Rothe (cf. [28]). Also the assumption of material periodicity can
be weakened substantially (cf. [8]). Moreover, in last several years some authors systemize
more general convergence concepts, avoiding the formal notion of the two-scale convergence:
the “scale convergence” from [14] is based on the theory of (generalized) Young measures, [21]
and [22] work with rather abstract “proper H-structures”, etc. However, the motivation for
the two-scale approach comes from problems of technical physics and engineering. Unlike some
other homogenization methods, its fundamentals are both geometrically and physically trans-
parent and contain no artificial or tricky choices of admissible test functions. General software
packages for the analysis of problems of continuum mechanics typically ignore all advanced
homogenization approaches; however, a lot of non-commercial numerical algorithms and soft-
ware codes for special problems (not only for those discussed in [2]) has been developed yet.
Some classical problems in mechanics (from linear elastostatics to local contact conditions and
elastoplasticity with infinitesimal strain) are covered by the analysis [26], the equations of heat
transfer are studied in details in [11], etc.

To demonstrate that it is possible to suggest rather simple algorithm to couple the micro-
and macroanalysis and not to debase convergence properties of commonly used numerical meth-
ods, we shall formulate a linear elliptic model problem with homogeneous Dirichlet boundary
conditions and explain the convergence of our approach for the special type of construction
of finite-dimensional approximating spaces (e. g.for the linear finite element interpolation, dis-
cussed in the same context in [27], in particular on polyhedral domains). Then, removing
some simplifications, we shall observe the consequences, sketch how to overcome corresponding
difficulties and refer to relevant literature.
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2 Iterative algorithm for a model problem

Let us consider a domain Ω in the real Euclidean space R3 and a subspace V of the Sobolev
space W 1,2(Ω) containing W 1,2

0 (Ω) (Dirichlet boundary conditions are included here). Let Λ
be some subdomain of Ω; in practice vol Ω � vol Λ. Let us assume that the decomposition of
Ω (well-known from the finite element theory) generates finite-dimensional spaces Vh and the
decomposition of Λ finite-dimensional spaces Vδ; h and δ here are norms of such decompositions
(for h � δ > 0 the notation Vh and Vδ cannot be mismatched) and we expect Vδ → V and
Vh → V as h, δ → 0 is some reasonable sense. For simplicity, we shall now assume that Vh

and Vδ are even subspaces of V ; we just know that it is not realistic to assume some relation
between Vh and Vδ a priori. Following [5], let us therefore introduce a new space (of higher finite
dimension) Vhδ = Vh + Vδ. Since all above mentioned spaces are Hilbert ones, it is possible to
define operators of orthogonal projections Ph Vhδ → Vh and Pδ : Vhδ → Vδ, using an arbitrary
bilinear, symmetric, continuous and coercive form a : V × V → R (as a(., .) can be identified
with a scalar product in V ). These projections will be crucial for the design of the iterative
algorithm, generating special sequences of approximate solutions of our model problem.

Let us consider some “external load” f ∈ V ∗ (V ∗ is a dual space to V , 〈., .〉 will denote the
duality between V and V ∗). We shall try to construct the bilinear form a from the formula

a(u, v) =
∫
Ω
Ã(x)∇u(x) · ∇v(x) dx

for every u, v ∈ V . It is not quite easy because we do not know “homogenized material
characteristics” Ã on Ω properly – at least on Λ (where we intend to analyze lower-scale
phenomena) we have to obtain them by some homogenization process (via ε→ 0) from

aε(uε, v) =
∫
Ω
A(x, x/ε)∇uε(x) · ∇v(x) dx

where some “quasiperiodic material characteristics” A are prescribed in the Lebesgue space
L∞(Ω×R3) such that its values are Y -periodic in the second variable, Y is a unit cell in R3 (a
representative volume element of paralleliped shape, often rescaled as Y = [0, 1]3) and uε, v ∈ V
again. To make the homogenization possible, we shall need

lim
ε→0

aε(uε, v) = a(u, v) . (1)

To guarantee the validity of (1) is not trivial. The explicit form of Ã is known only in
very special cases, as for layered materials (see [2], p. 98), including simple applications to heat
propagation (cf. [11]). In most cases a deeper knowledge of the two-scale convergence theory is
necessary. For simplicity, the symbol → will be reserved for the strong convergence, the symbol
⇀ for the weak convergence and the symbol ⇀⇀ for the two-scale convergence in the following
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sense (by [2], p. 176): we say that a sequence {vε}, constructed for such positive ε that ε→ 0,
two-scale converges to v0 ∈ L2(Λ× Y ), briefly vε ⇀⇀ v0, iff

lim
ε→0

∫
Λ
vε(x)ψ(x, x/ε) dx = (volY )−1

∫
Λ

∫
Y
v0(x, y)ψ(x, y) dy dx

for every ψ ∈ C∞0 (Λ, C∞# (Y )); the lower index # here forces the Y -periodicity. Let us sketch
the basic idea of the the two-scale homogenization now (much more details are presented in [2]
– the crucial proof can be found in [2], p. 182, many generalizations are available). Since {uε}
is a bounded sequence in V (or at least in certain V Λ, containing all restrictions of functions
from V to Λ), uε ⇀⇀ u0 holds for some u0 ∈ L2(Λ × Y ) constant in the second variable, thus
also uε → u0 (where the second variable is omitted) in L2(Λ). Moreover, ∇uε ⇀⇀ ∇xu0 +∇yu1

(x ∈ Λ, y ∈ Y ); here an additional function u1 ∈ L2(Λ,W 1,2
# (Y )) has the zero mean value∫

Y
u1(., y) dy = 0

on Λ. Consequently also Aε(./ε)∇uε ⇀ Ã∇u0 in L2(Λ)3. Unfortunately, a corresponding
Ã ∈ L2(Λ), for a fixed x ∈ Λ a constant elliptic matrix, cannot be determined in a simple way
– its general derivation requires solving an auxiliary system of differential or integral equations
(for details see [2], p. 112). Under some more regularity assumptions such expensive calculations
can be avoided; the relevant discussion is contained in [17], [16], [15] and [4]. The alternative
“multiresolutional homogenization” of [11] is based on the MAPLE-supported wavelet analysis.

Let us now introduce our model problem: find such u ∈ V that

a(u, v) = 〈f, v〉 (2)

for all v ∈ V ; some estimate of u, denoted by u0 (not substantial for further considerations), is
available. Its discrete analogy is: find such uhδ ∈ Vhδ that

a(uhδ, vhδ) = 〈f, vhδ〉 (3)

for all vhδ ∈ Vhδ. In particular, (2) can be expressed as

a(u, vhδ) = 〈f, v〉 (4)

for all vhδ ∈ Vhδ (because Vh and Vδ are subspaces of V ).

Let ω be certain real parameter, 0 < ω < 2. Following [5] (with slight modifications, coming
from the two-scale analysis), let us suggest the following algorithm:

1. find such wε
δ ∈ Vδ that

aε(wε
δ , vδ) = 〈f, vδ〉 − aε(u0, vδ) (5)

for all vδ ∈ Vδ,
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2. set u
1
2 = u0 + ωwε

δ ,

3. find such wh ∈ Vh that
a(wh, vh) = 〈f, vh〉 − a(u

1
2 , vh) (6)

for all vh ∈ Vh,

4. set u1 = u
1
2 + ωwh.

The solvability of (2), (5) and (6) is evident from the standard Lax-Milgram theorem (cf. [2],

p. 66). Similarly (using u1 instead of u0) u
3
2 , u2, etc., can be evaluated. We shall verify that in

this way we receive a sequence of approximate solutions of (2) with good convergence properties,
related to its exact solution u.

Using (3) and (5) and the projection operator Pδ, we can analyze the first step of the
algorithm. We obtain

a(wε
δ − Pδ(uhδ − u0), vδ) = aε(wε

δ − Pδ(uhδ − u0), vδ)

+(a− aε)(wε
δ − Pδ(uhδ − u0), vδ)

= 〈f, vδ〉 − aε(u0, vδ)− aε(Pδ(uhδ − u0), vδ)

+(a− aε)(wε
δ − Pδ(uhδ − u0))

= 〈f, vδ〉 − aε(u0, vδ)− a(Pδ(uhδ − u0), vδ)

+(a− aε)(Pδ(uhδ − u0)) + (a− aε)(wε
δ − Pδ(uhδ − u0))

= 〈f, vδ〉 − aε(u0, vδ)− a(uhδ − u0, vδ) + (a− aε)(wε
δ , vδ)

= 〈f, vδ〉 − aε(u0, vδ)− 〈f, vδ〉 − a(u0, vδ) + (a− aε)(wε
δ , vδ)

= (a− aε)(wε
δ − u0, vδ) ;

this yields
wε

δ = Pδ(uhδ − u0) + eδ (7)

where eδ is a solution (by the Lax-Milgram theorem again) of an equation

a(eδ, vδ) = (a− aε)(wε
δ − u0, vδ)

for an arbitrary vδ ∈ Vδ; this can be expressed also in form

a(eδ, vδ) = (a(wε
δ , vδ)− aε(wε

δ , vδ))− (a(u0, vδ)− aε(u0, vδ)) ,

more transparent for the understanding of two-scale convergence properties.

Similarly, using (3) and (6) and the projection operator Ph, we can analyze the third step
of the algorithm. We obtain

a(wh − Ph(uhδ − u
1
2 ), vh) = 〈f, vh〉 − a(u

1
2 , vh)− a(Ph(uhδ − u

1
2 ), vh)

= 〈f, vh〉 − a(u
1
2 , vh)− a(uhδ − u

1
2 , vh)

= 〈f, vh〉 − a(u
1
2 , vh)− 〈f, vh〉+ a(u

1
2 , vh) = 0 ;



8 Jǐŕı Vala, Brno University of Technology

this yields (unlike the previous case, without any “ε-corrections” here)

wh = Ph(uhδ − u
1
2 ) . (8)

Let us study the distance between uhδ and u1 in V . Let I be an identity mapping. Applying
(8) and (7), we have

uhδ − u1 = uhδ − u
1
2 − ωwh

= (I − ωPh)(uhδ − u
1
2 )

= (I − ωPh)(uhδ − u0 − ωwε
δ)

= (I − ωPh)(I − ωPδ)(uhδ − u0)− ω(I − ωPh)eδ .

For simplicity, let us supply the Hilbert space V by the norm ‖.‖ =
√
a(. , .); similar norms are

admissible in finite-dimensional subspaces of V , too. The norm of (I−ωPh)(I−ωPδ) is always
(under the assumption 0 < ω < 2) lesser than 1; this result, derived in [5] for each couple
of orthogonal projectors in a finite-dimensional Hilbert space, comes from the strengthened
Cauchy-Buniakowskǐı-Schwarz inequality and from the spectral analysis of linear operators.
Thus for some positive α and β where β < 1 we can conclude

‖uhδ − u1‖ ≤ β‖uhδ − u0‖+ α‖eδ‖ ,
‖uhδ − u2‖ ≤ β2‖uhδ − u0‖+ (1 + β)α‖eδ‖ ,

etc., and for an integer n finally

‖uhδ − un‖ ≤ βn‖uhδ − u0‖+
1− βn

1− β
α‖eδ‖ . (9)

One can immediately see that the limit passage n→∞ in (9) yields

lim
n→∞

‖uhδ − un‖ ≤ α

1− β
‖eδ‖ .

Thanks to (1) the homogenization step ε→ 0 gives

lim
n→∞

‖uhδ − un‖ = 0 .

However, we have not verified the expected limit relation between solutions uhδ of (3) and u of
(2) yet. Let us compare (3) with (4); the first simple result is

a(u− uhδ, vhδ) = 0 . (10)
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To support the macro- and microscale view to Ω, let us introduce such extension operator E
for functions defined on Ω \ Λ to Λ that for every v ∈ V corresponding v̂ defined as v̂ = v on
Ω \ Λ and v̂ = Ev on Λ belongs to V again.

Let rh and rδ be standard interpolants from V to its finite-dimensional subspaces Vh and
Vδ, respectively. Let us assume that the global interpolation criterion

lim
h→0

‖v̂ − rhv̂‖ = 0 (11)

and the local interpolation criterion

lim
δ→0

‖(v − v̂)− rδ(v − v̂)‖ = 0 (12)

are satisfied for an arbitrary v ∈ V . Then in (10) we can set vhδ = uhδ − ũhδ where ũhδ =
rhũ+ rδ(u− ũ). We obtain

a(u− ũhδ, vhδ) = a(uhδ − ũhδ, vhδ) = a(vhδ, vhδ)

and consequently the estimate

‖vhδ‖2 ≤ ‖u− ũhδ‖‖vhδ‖ .

Thus we receive (if ũhδ 6= uhδ)

‖uhδ − ũhδ‖ ≤ ‖u− ũhδ‖

and also

‖u− uhδ‖ ≤ ‖u− ũhδ‖+ ‖uhδ − ũhδ‖ ≤ 2‖u− ũhδ‖ .

The final conclusion

lim
h,δ→0

‖u− ũhδ‖ = 0

follows from the estimate

‖u− ũhδ‖ = ‖û+ (u− û)− rhû− rδ(u− û)‖ ≤ ‖û− rhû‖+ ‖(u− û)− rδ(u− û)‖

and from the global and local interpolation criteria (11) and (12).

The classical finite element convergence result is a very special case of (11) and (12); for
details see [27]; under additional regularity assumptions the better convergence quality can be
attached. The same paper explains the construction of the extension operator E by means
of extension theorems in Sobolev spaces. However, much more numerical approaches can be
included here – cf. wavelet Galerkin methods in [3], various meshfree techniques in [12], [13]
and [18], etc.



10 Jǐŕı Vala, Brno University of Technology

3 Generalizations and examples of technical applications

Up to now, we have supposed that Vδ, Vh are subspaces of V . This may be violated in many
configurations: if Ω is not convex then its finite element approximation Ωh usually contains
points outside Ω; the same argument can be repeated for certain approximation Λδ of Λ. Let
us sketch the main arguments, how to preserve our results. We shall believe that both aε and
a (thanks to the properties of A) are allowed to be extended from Ω to Ωh and Λδ; instead of
aε in (5) we obtain some aε + aε

δ and instead of a in (6) some a + ah; ah is defined on Ωh \ Ω
and aε

δ on Λδ \Ω. In the same way we can extend a from Ω to obtain ahδ on (Ωh ∪Λδ) \Ω; the
equation (3) then contains a + ahδ instead of simple a. In the analysis of the first step of our
iterative algorithm we obtain an additive right-hand side term aε

δ(w
ε
δ − u0, vδ)− ahδ(uhδ, vδ), in

the analysis of its second step similarly ah(wh − u
1
2 , vh)− ahδ(uhδ, vh). We must verify that for

their bounded arguments all such bilinear forms vanish if h, δ → 0; this can be done e. g.using
the Lebesgue dominated convergence theorem. In more details: we obtain some additive term
ẽδ in (7) (not only eδ) and dh in (8) whose norms ‖ẽδ‖ and ‖dh‖ will disturb the derivation of
(9); we must guarantee their convergence to zero for h, δ → 0. The other difficulty is that (4)
is not an exact consequence of (2) of now; disturbing terms have to be removed in the limit
case again, using the arguments from the preceding discussion.

Figure 3: ANSYS-based calculations with “effective values” of heat conduction factors
in porous rubber insulation layers (Department of Technology of Building Materials and

Components, Faculty of Civil Engineering, Brno University of Technology)
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Let us remind that our basic equation (2) occurs e. g.in the theory of stationary heat transfer
with an unknown temperature field. Figure 3 demonstrates how the construction of homog-
enized bilinear forms a instead of discrete forms aε can be applied in the ANSYS-supported
thermal design of new types of windows; its detail shows the thermal flows in a perforated
rubber-based layer. However, such calculations can incorporate insulation material properties,
but not accumulation ones. This is a motivation for the development of the same method
for time-dependent parabolic problems that can be decomposed back (step-by-step) to elliptic
ones, using the method of discretization in time, based on the analysis of convergence prop-
erties of Rothe sequences; principal ideas for such access can be taken from [28]. Another
useful generalization leads to the (rather weak) nonlinearity of a; in fact, heat conduction fac-
tor is temperature-dependent. Unfortunately, such analysis brings technical difficulties that
cannot be removed easily in general: the two-scale homogenization process, substituting aε by
a, may be correct, but some formal generalization of the above presented algorithm may give
bad results. If strong nonlinearities occur then the two-scale limit can exist even in case that
no “effective” a is available and rather general measures (instead of classical Lebesgue and
Hausdorff ones) are taken into consideration – cf. [29].

The macroscopic equations of heat transfer from the previous example belong to classical
knowledge of mechanical and civil engineers; thus it was not very difficult to identify them with
two-scale limit forms of similar equations at certain microstructural level. Unfortunately, in
the analysis of more complicated physical processes in the microstructure the final macroscopic
differential or integral formulation are typically not known a priori; consequently the construc-
tion of two-scale limits is complicated and no simple (linearized) numerical algorithm can be
applied. One problem of this type is the analysis of the diffusive phase transformation in the
substitutional multicomponent Fe-rich alloys. Nevertheless, the results of MATLAB-based nu-
merical modelling of fields of molar fractions in this case can naturally explain some phenomena
observed in the macroscopic world, as demonstrated in [25] where relevant references to both
mathematical and physical studies can be found.

We have demonstrated that (at least for a sample problem) the general two-scale approach,
combined with a relatively simple iterative algorithm, can be helpful to simplify formulations
of mathematical models of engineering problems and to reduce all numerical computations
without substantial loss of their validity (not identical with the “verification” of such models,
incorporating the existence and uniqueness of solution, the convergence of numerical methods,
etc., in practice). In this sense the “optimization” from the title may be understood, although
no exact cost function(al) and / or precise requirements related to properties of above mentioned
models have been presented. However, most questions of such “scale bridging” are still open
and offer a large space for intensive research activities in the near future.
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