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Abstract: This paper shows a method for solution of optimizing problems which is other than
the usually used Simplex method. The simplex method is considered one of the basic models
from which many linear programming techniques are directly and indirectly derived. The
simplex method is an iterative process which approaches, step by step, an optimum solution
in such a way that an objective function of maximization or minimization is fully reached.
Each iteration in this process consists of shortening the distance (mathematically and also
graphically) from the objective function to the intercepted vertex of a convex set determined
by the inequalities that describe the problem. The simplex method is not the only technique
known and used for solving linear programming problems. Other methods are more useful
for the pedagogical expediency, see e.g. R. Dorfman, P.A.Samuelson, and R.M.Solov, Linear
Programming and Economic Analysis, New. York: McGraw-Hill Book Comp. Inc., 1958.
I introduce another method than simplex method. This method is be based on the principle
of graphical method of optimization of linear problems for two variables, but my method is
generalized for n variables and arbitrary finite number of inequalities describing the problem.
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1. The leading article

1.1 Introduction The general problem of linear programming is usually formulated
as follows:
Let aij, bi, cj (i = 1, 2, . . . , m ; j = 1, 2, . . . , n) be given real numbers and let us denote
I1 ⊂ I = {i = 1, 2, . . . , m} and J1 ⊂ J = j = 1, 2, . . . , n}. The problem of maximizing
of the function

n∑
i=1

cj xj (1)

on the set of
n∑

j=1

aij xj ≤ bj (i ∈ I1) (2)

n∑
j=1

aij xj = bj (i ∈ I − I1) (3)
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xj ≥ 0 (j ∈ J1) (4)
is called maximizing problem of linear programming in mixed form if I1 6= Ø, I1 6= I or
J1 6= J .
The problem of linear programming given by (1) till (4), where I1 = I and J1 = J , is the
problem of maximizing of the function

n∑
j=1

cjxj (5)

on the set of linear independent system of linear inequalities

n∑
j=1

aij xj ≤ bj (i ∈ I1) (6)

xj ≥ 0 (j ∈ J1) (7)

is called maximizing problem of linear programming in the form of inequalities.

With respect to the fact that for arbitrary set M ⊂ Rn where Rn is n dimensional vector
space and for arbitrary linear function z : M → Rn

minz(x) = - max(−z(x)), where x ∈ Rn

holds then if one of extremes exists we can transform also the minimizing problem into
the problem with linear equations or linear inequalities. We do the rearrangement by
multiplication by number −1.

2. The solution of general problem

We desist from the condition (4) and hence also from (7) in the following considera-
tions. We rewrite the system (6) and add the objective function as the last row into the
form:

a11 x1 + a12 x2 + . . . + a1n xn + b1 ≥ 0
a21 x1 + a22 x2 + . . . + a2n xn + b2 ≥ 0
. . . (8)
am1 x1 + am2 x2 + . . . + amn xn + bm ≥ 0

c1 x1 + c2 x2 + . . . + cn xn = 0

We call the set x = {x1, x2, . . . , xn} ⊂ Rn of elements a polyhedron. We call the poly-
hedron opened if m ≤ n. We know that the objective function z(x), x ∈ Rn receives
its optimal values at vertices or at all areas of polyhedron. In the first part of the com-
putational procedure we find one of the polyhedron vertices and we transform it into
the coordinate origin simultaneously. Simultaneously we transform all hyperplanes of the
polyhedron and the objective function with respect to the given transformation. We con-
tinue as follows:
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We select arbitrary hyperplane and we denote it by the index i ∈ {1, 2, . . , m}. We divide
the whole column at the variable x1 by coefficient ai1 and we put simultaneously

x1 = x,
1 − ai2 x2 − ai3 x3 . . . − ain xn − bi. (9)

We introduce the transformation relation (9) into the system (8) and the mathematical
representation of the problem transforms for m > 1 into the following form:

a11
ai1

x,
1 + (a12 − a11 ai2

ai1
) x2 + (a13 − a11 ai3

ai1
) x3 + . . . + (a1n − a11 ain

ai1
) xn + b1 − bi

a11
ai1

≥ 0

a21
ai1

x,
1 + (a22 − a21 ai2

ai1
) x2 + (a23 − a21 ai3

ai1
) x3 + . . . + (a2n − a21 ain

ai1
) xn + b2 − bi

a21
ai1

≥ 0

.

ai−1,1
ai1

x,
1 + (ai−1,2 − ai−1,1 ai2

ai1
) x2 + (ai−1,3 − ai−1,1 ai3

ai1
) x3 + . . . + (ai−1,n − ai−1,1 ain

ai1
) xn + bi−1 − bi

ai−1,1
ai1

≥ 0

x,
1 + 0 + 0 + . . . + 0 + 0 ≥ 0

ai+1,1
ai1

x,
1 + (ai+1,2 − ai+1,1 ai2

ai1
) x2 + (ai+1,3 − ai+1,1 ai3

ai1
) x3 + . . . + (ai+1,n − ai+1,1 ain

ai1
) xn + bi+1 − bi

ai+1,1
ai1

≥ 0

.

a21
ai1

x,
1 + (a22 − a21 ai2

ai1
) x2 + (a23 − a21 ai3

ai1
) x3 + . . . + (a2n − a21 ain

ai1
) xn + b2 − bi

a21
ai1

≥ 0

In the following step we choose some rows where the coefficient at the variable x2 is dif-
ferent from zero arbitrary. The existence of such road follows from the assumption that
m linear rows are independent. Further we suppose that this assumption is satisfied by
the row s, s ≤ m. It is obvious that s 6= i. We continue in such a way that we divide the
whole second column by the expression

as2 − asi ai2

ai1

and then we introduce the following transformation:

x2 = −as1

ai1
+ x,

2 − (as3 − as1 ai3

ai1
) x3 + . . . − (as,n − as,1 ain

ai1
) xn − bs + bi

as,1

ai1
.

After this transformation the s-th row will be of the form:

0 x,
2 + 0 + 0 + . . . + 0 + 0 ≥ 0

We continue till we do all the m < n transformations by analogy. Thus we calculate one
point of one edge of polyhedron which transformed into the coordinate origin.
In the account that m ≥ n we find after n transformations one vertex of polyhedron
which transformed into the coordinate origin. The whole calculation is done on computer
therefore we calculate only with the matrix of coefficients of polyhedron. We apply all
the steps of transformation to the objective function

c1 x1 + c2 x2 + . . . + cn xn + 0 ≥ 0

and we receive after the first transformation
c1
ai1

x,
1 + (c2 − c1 ai2

ai1
) x2 + (c3 − c1 ai3

ai1
) x3 + . . . + (cn − c1 ain

ai1
) xn + 0− bi

c1
ai1
≥ 0

Further adaptations of coefficients of the objective function run over simultaneously with
the adaptations of coefficients of polyhedron such as it was given in the previous descrip-
tion of the hash algorithm applied onto polyhedron.
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As the next step we extend the matrix of coefficients describing the system (8) with the
objective function which is of the type (m + 1)× (n + 1) such that we add the matrix of
the type n× (n + 1) which consists of unit matrix type n× n with added column vector
of zeros of the length n. This step is necessary for explicit expression of the point of edge
optionally vertex of polyhedron and the optimal value of the objective function. All the
above described affinite transformation are applied onto such expanded matrix. After the
above described transformation algorithm we obtain the original coordinates of the point
of edge or the vertex of polyhedron which is transformed into the coordinate origin in the
last column of the matrix n × (n + 1). We show the expanded matrix of coefficients of
the type (m + 1 + n)× (n + 1) before the transformation algorithm.



a11 a12 a13 . . . a1n b1

a21 a22 a23 . . . a2n b2

. . . . . . . .
am1 am2 am3 . . . amn bm

c1 c2 c3 . . . cn 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . .
0 0 0 . . . 1 0



3. Optimizing and decision making process

We suppose that m ≥ n and that the transformation algorithm transformed one of the
polyhedron vertices were transformed into the coordinate origin. If after this transforma-
tion all the coefficients in the first m rows of the last (n + 1)-the column are nonnegative
numbers and simultaneously all transformed coefficients of the objective function it is c,

k

in the (m + 1)-th row negative the maximizing process of the objective function z(x) is
finished. In the last n rows of the (n+1)-the column there are original coordinates of the
polyhedron vertex in which the objective function acquires its maximum and the value of
this maximum is at the position [m + 1, n + 1] of transformed matrix.
If previous situation does not occur then it is necessary to do the following analysis. We
suppose for coefficients in the first m rows of the (n+1)-th column nonnegative again but
some of transformed coefficients of the objective function in the (m+1)-th row is positive.
Let this situation in the j0-th column occur. We look at all transformed coefficients in the
j0-th column. If all transformed coefficients of the polyhedron a,

ij0 are nonnegative then
the problem does not have any solution. It is possible to get along this edge incident to
polyhedron to infinity. The polyhedron is not bounded and the solution does not exist.
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4. Example

4.1 Remark I drafted a program for explanation of the given method which address is
on the server Pal of the Technical University in Brno: Q: \vyuka\matemat\Tomsova\Polyhedron\
matice. exe. We do an application of this program. Data are denoted as CONCRETE

4.2 Example Maximize the objective function z = 3x + 5y in the area bounded by
the following restrictions:

1) x ≥ 0
2) y ≥ 0
3) x ≤ 5
4) x + 2y ≤ 12
5) 2x + 3y ≤ 19

Solution: We line a figure for the better graphical preview where the area of polyhedron
will be bounded with bisectors suitable to the restrictions with the vertices 0 = [0, 0], A =
[5, 0], B = [5, 3], C = [2, 5], D = [0, 6]

0 [0,0]

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ

````````̀

A [5,0]

B [5,3]

C [2,5]
D [0,6]

Figure 1
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After start-up of program we obtain the following matrix:



1 0 0
0 1 0

−1 0 5
−1 −2 12
−2 −3 19

3 5 0
1 0 0
0 1 0


.

The first five rows represent the bound of the given polyhedron. The sixth row contains
the objective function and in the last two rows there is a unit matrix. The program
continues with given translations given in the previous part of article and the output
block has the following form:



3 −2 2
−2 1 5
−3 2 3

1 0 0
0 1 0

−1 −1 31
3 −2 2

−2 1 5


.

The sixth element in the last column is the greatest value of the objective function and
the last elements in the two last rows are the coordinates of the point in which the greatest
value of the objective function arrives. We see that the problem has just one solution and
it is at the point C and the value of the objective function is 31. Such a simple example
was chosen for demonstration. Program solves more complicated problems and responds
to the problem of the existence of a solution.
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