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Abstract

The modeling of “quantum probability”, in another words, the study

of random events, which are not measurable simultaneously, provides us

with interesting results. In this paper we summarising some results from

the study of conditionnig non compatible random events.

1 Introduction and basic notion

Conditional probability plays a basic role in the classical probability theory.

Some of the most important areas of the theory such as martingales, stochastic

processes rely heavily of this concept. Conditional probabilities on a classical

measurable space are studied in several different ways, but result in equivalent

theories. The classical probability theory does not decsribe the causality model.

The situation charges when non-standard spaces are considered. For exam-

ple, it is a well known that the set of random events in quantum mechanics

experiments is a more general structure than Boolean algebra. In the quantum
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logic approach the set of random events is assumed to be a quantum logic (or-

thomodular lattice L). Such model we can find not only in the quantum theory,

but for example, in the economics, biology etc. We will show such such a simple

situation in the Example 1.

In this paper we will study a conditional state on a quantum logic using

Renyi’s approach (or Bayesian principle). This approach helps us to define

independence of events and differently from the situation in the classical theory

of probability, if an event a is independent of an event b, then the event b

can be dependent on the event a (problem of causality) ([13], [?]). We will

show that we can define a s-map (function for simultaneous measurements on

a quantum logic). It can be shown that if we have the conditional state we can

define the s-map and conversely. By using the s-map we can introduce joint

distribution also for noncompatible observables on a quantum logic. Moreover,

if x is an obsevable on L and B is Boolean sub-algebra of L, we can construct

an observable z = E(x|B), which is a version of conditional expectation of x

but it need not to be necessarily compatible with x.

Definition 1. 1 Let L be a nonempty set endowed with a partial ordering ≤.

Let there exists the greatest element 1 and the smallest element 0. We consider

operations supremum (∨), infimum ∧ (the lattice operations ) and an map ⊥:

L→ L defined as follows.

(i) For any {an}n∈A ∈ L, where A ⊂ N is finite,

∨
n∈A

an,
∧
n∈A

an ∈ L.

(ii) For any a ∈ L (a⊥)⊥ = a.

(iii) If a ∈ L, then a ∨ a⊥ = 1.

(iv) If a, b ∈ L such that a ≤ b, then b⊥ ≤ a⊥.



(v) If a, b ∈ L such that a ≤ b then b = a ∨ (a⊥ ∧ b) (orthomodular law).

Then (L, 0, 1,∨,∧,⊥) is said to be the orthomodular lattice (briefly OML).

Let L be an OML. Then elements a, b ∈ L will be called:

• orthogonal (a⊥b) iff a ≤ b⊥;

• compatible (a↔ b) iff there exist mutually orthogonal elements a1, b1, c ∈

L such that

a = a1 ∨ c and b = b1 ∨ c.

Definition 1. 2 A map m : L→ [0, 1] such that

(i) m(0) = 0 and m(1) = 1.

(ii) If a⊥b then m(a ∨ b) = m(a) +m(b)

is called a state on L.

Definition 1. 3 [13] Let L be an OML. A subset L0 ⊂ L − {0} is called a

conditional system (CS) in L if the following conditions hold:

• If a, b ∈ L0, then a ∨ b ∈ L0.

• If a, b ∈ L0 and a < b, then a⊥ ∧ b ∈ L0.

Let A ⊂ L. Then L0(A) is the smallest CS, that contains the set A.

Definition 1. 4 [13] Let L be an OML and let L0 be a CS in L. Let f :

L× L0 → [0, 1]. If the function f fulfills the following conditions:

(C1) for each a ∈ L0 f(., a) is a state on L;

(C2) for each a ∈ L0 f(a, a) = 1;



(C3) if {ai}ni=1 ∈ L0 and ai are mutually orthogonal, then for each b ∈ L

f(b,
n∨
i=1

ai) =
n∑
i=1

f(ai,
n∨
i=1

ai)f(b, ai);

then it is called a conditional state.

Definition 1. 5 [13] Let L be an OML and f be a conditional state. Let b ∈ L,

a, c ∈ L0 such that f(c, a) = 1. Then b is independent of a with respect to the

state f(., c) (b �f(.,c) a) if f(b, c) = f(b, a).

If L0 be CS and f : L× L0 → [0, 1] is a conditional state, then ( [13])

(i) Let a⊥, a, c ∈ L0, b ∈ L and f(c, a) = f(c, a⊥) = 1. Then b �f(.,c) a if and

only if b �f(.,c) a
⊥.

(ii) Let a, c ∈ L0, b ∈ L and f(c, a) = 1. Then b �f(.,c) a if and only if

b⊥ �f(.,c) a.

(iii) Let a, c, b ∈ L0, b ↔ a and f(c, a) = f(c, b) = 1. Then b �f(.,c) a if and

only if a �f(.,c) b.

2 An s-map

Definition 1. 6 Let L be an OML. The map p : Ln → [0, 1] will be called s-map

if the following conditions are met:

(s1) p(1, ..., 1) = 1;

(s2) if there exist i, j, such that ai ⊥ aj, then p(a1, ..., an) = 0;

(s3) if ai ⊥ bi, then

p(a1, ..., ai ∨ bi, ..., an) = p(a1, ..., ai, ..., an) + p(a1, ..., bi, ..., an),

for i = 1, ..., n.



Definition 3. 1 Let x be an obsevable on L and B be a Boolean sub-algebra of

L and f be conditional state on L such that Lc = L−{0}. Then the observable

z will be called a conditional expectation of x with respect to B in the state

f(., 1) iff for any b ∈ B − {0}

f(x, b) = f(z, b).

We will denote z := Ef (x|B).

It is clear that if L be a Boolean algebra, then Ef (x|B) is known the conditional

expectation.

Proposition 2. 1 Let L be an OML and let p be an s-map. Then

(1) if ai ⊥ aj, then p(a1, ..., an) = 0;

(2) for any a ∈ L, a map ν : L→ [0, 1], such that ν(a) := p(a, ..., a) is a state

on L;

(3) for any (a1, ..., an) ∈ Ln p(a1, ..., an) ≤ ν(ai) for each i = 1, ..., n;

(4) if ai ↔ aj, then

p(a1, ..., an) = p(a1, ..., ai−1, ai ∧ aj , ..., aj ∧ ai, aj+1, ..., an).

Let ā = (a1, ..., an) ∈ Ln. Let us denote π(ā) a permutation of (a1, ..., an).

Proposition 2. 2 Let L be an OML. Let p be an s-map and let (a1, ..., an) ∈

Ln.

(1) If there exists i ∈ {1, ..., n}, such that ai = 1, then

p(a1, ..., an) = p(a1, ..., ai−1.aj , ai+1, ..., an)

for each j = 1, ..., n.



(2) If there exist i 6= j such that ai = aj, then

p(a1, ..., an) = p(π(a1, ..., an)).

(3) If there exist i, j such that ai ↔ aj, then

p(a1, ..., an) = p(π(a1, ..., an)).

Let Π(ā) be the set of all permutions and let

ā
(i)
(k) = (a1, ..., ak−1, ak, ak+1, ..., ai−1, ak, ai+1, ..., an).

Corollary 2. 1 Let L be an OML. Let p be an s-map and let ā ∈ Ln.

(1) If there exists i ∈ {1, ..., n}, such that ai = 1, then

p(ā) = p(b̄)

for each b̄ ∈
⋃
k Π(ā(i)

(k)).

(2) If there exist i 6= j such that ai = aj, then

p(ā) = p(b̄)

for each b̄ ∈
⋃
k Π(ā(i)

(k)).

(3) If there exist i, j such that ai ↔ aj, then

p(ā) = p(b̄)

for each b̄ ∈
⋃
k Π(ā(i)

(k)).

Example 2. 1 Let n = 3 and a, b ∈ L. If ā = (a, a, b), then Π(ā) = {(a, a, b), (b, a, a), (a, b, a)}

and ā(1)
(3) = (b, a, b), ā(2)

(3) = (a, b, b),ā(1)
(2) = (a, a, b). Hence

p(a, a, b) = p(a, b, a) = p(b, a, a) = p(b, b, a) = p(a, b, b) = p(b, a, b).

Let n = 4 and a, b, c ∈ L. If ā = (a, b, c, c), then ā
(4)
(2) = (a, b, c, b) and

p(a, a, b, c) = p(a, b, c, a) = p(b, b, c, a) = ... = p(c, a, b, c).



Definition 3. 2 Let L be an OML and let p be an s-map. If x1, ..., x2 are

observables on L, then the map

px1,...,xn : B(R)n → [0, 1],

such that

px1,...,xn(E1, ..., En) = p(x1(E1), ..., xn(En))

is called the joint distribution of the observables x1, ..., xn.

Definition 3. 3 Let L be an OML and let p be an s-map. If x1, ..., x2 be ob-

servables on L, then the map

Fx1,...,xn : Rn → [0, 1],

such that

Fx1,...,xn(r1, ..., rn) = p(x1(−∞, r1), ..., xn(−∞, rn))

is called the joint distribution function of the observables x1, ..., xn.

Definition 3. 4 Let L be an OML and let p be an s-map. If x1, ..., x2 be ob-

servables on L, then a marginal distribution function is

lim
xi→∞

Fx1,...,xi,...,xn(r1, ..., ri, ..., rn).

Definition 3. 5 Let L be an OML and let p be an s-map. Let x1, ..., x2 be ob-

servables on L and Fx1,...,xn be the joint distribution function of the observables

x1, ..., xn. Then we say, that Fx1,...,xn has the property of commutativity if for

each (r1, ..., rn) ∈ Rn

Fx1,...,xn(r1, ..., rn) = Fπ(x1,...,xn)(π(r1, ..., rn)).

It is clear that Fx1,...,xn has the property of commutativity if and only if

p(x1(E1), ..., xn(En)) = p(π(x1(E1), ..., xn(En))),

for each Ei ∈ B(R), i = 1, ..., n.



Proposition 3. 1 Let L be an OML and let p be an s-map. Let x1, ..., x2 ∈ O

and let Fx1,...,xn(r1, ..., rn) be the joint distribution function of the observables

x1, ..., xn.

(1) For each (r1, ..., rn) ∈ Rn 0 ≤ Fx1,...,xn(r1, ..., rn) ≤ 1;

(2) If ri ≤ si, then Fx1,...,xn(r1, ..., ri, ..., rn) ≤ Fx1,...,xn(r1, ..., si, ...., rn).

(3) For each i = 1, ..., n

lim
ri→∞

Fx1,...,xn(r1, ..., rn) = Fx1,...,xn(r1, ...ri−1, 1, ri+1, ..., rn).

(4) For each i = 1, ..., n

lim
ri→−∞

Fx1,...,xn(r1, ..., rn) = 0.

(5) If there exist i, j, such that i 6= j and xi ↔ xj, then

Fx1,...,xn(r1, ..., rn) = Fπ(x1,...,xn)(π(r1, ..., rn)).

Proposition 3. 2 Let L be an OML and let p be an s-map. Let x1, ..., xn ∈ O

and let Fx1,...,xn(r1, ..., rn) be the joint distribution function. Compatibility of

just two observables imply the total commutativity.

Proposition 3. 3 Let L be an OML and let x1, ..., xn ∈ O. Then there exist a

probability space (Ω,=, P ) and random variables ξ1, ..., ξn on it, such that

Fx1,...,xn(r1, ..., rn) = Fξ1,...,ξn(r1, ..., rn)

and Pξi such that

Pξi((−∞, r)) = ν(xi(−∞, r)),

where r ∈ R and i = 1, ..., n is the probability distribution of the random varaible

ξi,



If we consider a quantum model as an OML, a marginal distribution function

defined by using an s-map has the property of commutativity. It follows that,

in general, it need not true that that

Fx1,...,xn(t1, ..., tn) = Fx1,...,xn+1(t1, ..., tn,∞),

where Fx1,...,xn(t1, ..., tn), Fx1,...,xn+1(t1, ..., tn,∞) are joint distribution funtions

and x1, ..., xn+1 are observables on L. Consequently, we can find such an s-map

and an sn+1-map such that

p(a1, ..., an) 6= p(a1, ..., an, 1)

on L. Moreover if

p(a1, ..., an) = p(a1, ..., an, 1)

on L, then the s-map has the property of commutativity. This is not true in

general, either ([16]).
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