ESTIMATIONS OF SOLUTIONS OF HYBRID DIFFERENTIAL SYSTEMS

Kuzmych O.I.

Taras Shevchenko National University of Kiev, Ukraine, Faculty of Cybernetics, Vladimirskaya Str., 64, Kiev, UKRAINE

Abstract

Results on estimation of solutions of hybrid systems on finite time intervals are formulated as a result of our investigation. We are concerned with hybrid differential systems in the supposition that on every partial time interval it is represented by a linear differential system with constant coefficients.

We investigate hybrid differential systems on finite time intervals in the case when on every partial time interval it is represented by a linear differential system with constant coefficients. The main goal is to obtain inequalities for solutions of initial problems on given time interval. As a tool of investigation, method of Lyapunov functions is used.

Let a hybrid logic-dynamical system is expressed by subsystems

$$\dot{x}(t) = A_i x(t), \quad i = 1, \dots, N, \quad x \in \mathbb{R}^n, \quad t_{i-1} < t < t_i, \quad t_0 = 0$$
 (1)

1. Application of square Lyapunov functions.

The following result is obtained with the aid of a Lyapunov function having a quadratic form.

Theorem 1 Let the initial state of logic-dynamical system satisfies inequality

$$|x(0)| < \delta$$
.

Then

$$|x(t_N)| < \frac{\delta}{\sqrt{\prod_{i=1}^N \lambda_{min}[H_i(t_i)]}}$$
 (2)

with

$$H_i(t_i) = e^{-A_i^T(t_i - t_{i-1})} e^{-A_i(t_i - t_{i-1})}, \quad i = 1, \dots, N, \quad t_0 = 0.$$

2. Application of interval Lyapunov functions coinciding at boundary points.

We considered the case, when level surfaces given by a Lyapunov function on a preceding interval is an ellipse coinciding at the corresponding knot with an ellipse defined by a Lyapunov function used on the following interval.

Theorem 2 Let the initial state of logic-dynamical system satisfies inequality

$$|x(0)| < \delta$$
.

Then

$$|x(t_N)| < \frac{\delta}{\sqrt{\lambda_{min}[H_N(t_N)]}} \tag{3}$$

with

$$H_N(t_N) = \prod_{i=N}^1 e^{-A_i^T(t_i - t_{i-1})} \prod_{j=1}^N e^{-A_j(t_j - t_{j-1})}, \quad i = 1, \dots, N, \quad t_0 = 0.$$