
Qudrature of a parabola
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Masaryk University, Faculty of Science
e-mail: 22519@mail.muni.cz

1 Introduction

Quadrature of a parabola is one of the most famous problems of antiquity.
The greatest name connected with this problem is that of Archimedes. He
was the first who found the solution of this problem and proved it. It was
about 240 B.C. In this presentation let’s say a little about Archimedes’ solu-
tion and then show how to prove Archimedes’ theorem by a focus definition
of a parabola.

At first, let me explain how to do a quadrature of some plane object.
It is a problem of constructing a square of the same area as a given plane
object using only a ruler and a pair of compasses. Quadrature of a parabola
is then the problem of finding and constructing the square of the same area
as a parabolic segment with a common base.

By a parabolic segment we understand a plane object, bounded by the
arch of parabola with end points A, B and chord AB (we call it base). Let’s
define a vertex of parabola as a point where the tangent to the parabola,
parallel to the base, is touching the parabola p.
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Fig. 1:  segment of a parabola with the base AB
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Fig. 2 :  vertex of a segment of parabola



2 Archimedes’ theorem

Archimedes started this theorem:
The area of every segment of a parabola means four-thirds the area
of a triangle with the same base AB and vertex P as the segment.

S =
4

3
S4ABP.

This is sufficient for doing the quadrature of parabola, because if we have
the mentioned triangle, we can easily construct the rectangle of the same
area. Then we can use any of the Euclid theorems to obtain a square of the
same area.

Archimedes proved this theorem twice - by physical and mathematical
means. His physical solution is based on the stability on a lever.

Archimedes’ proofs are based on three theorems, which were not proved
by him. Let’s show how we can prove two of them by the focus definition
of parabola and show that Archimedes’ theorem can be completely concluded
from them. We will show the procedure which is not Archimedes’ own but
the main idea is the same as his.

The theorems are:
Proposition 1
If from a point on a parabola a straight line be drawn which is either itself
the axis or parallel to the axis, as PS, and if AB be a chord parallel to the
tangent to the parabola at P and meeting PS in S, then

AS = SB.

Conversely, if AS = SB, the chord AB will be parallel to the tangent at P .

Proposition 2
If in a parabola AB be a chord parallel to the tangent at P , and if a straight
line be drawn through P which is either itself the axis or parallel to the axis,
and which meets AB in S and the tangent at A to the parabola in C, then

PS = PC.

(see [1])

3 Focus definition of a parabola

We know that parabola is a set of points which have the same distance from
the directrix and from the focus. We mark the point which is the perpen-
dicular projection of the point (A) to directrix by a letter with a low index 0



(A0). It results from the definition that if we know the focus of the parabola
and the point on directrix A0, we can find the relevant point of parabola A
as a point of intersection of perpendicular line through the point of directrix
A0 and perpendicular bisector of abscissa FA. Perpendicular bisector of FA
is equally tangent of the parabola, what can be shown in this picture:
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Fig. 3: focus definition of  a parabola
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Fig. 4: tangent to a parabola
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We can prove it:
| FX |=| FX´ | + | XX´ |,

simultaneously:

| FX´ |=| A0X´ |≥| X0X´ | | XX´ |>| RX | .

By addition we obtain:

| FX |>| X0´X´ | + | RX |=| X0R | + | RX |=| X0X | .

4 Archimedes’ triangle

Let’s introduce one more definition:
Let C be the point of intersection of two tangents at different points
A, B of parabola. The triangle ABC is Archimedes’ triangle drawn



to a segment of parabola with the base AB.
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Fig. 5: Archimedes' triangle 
drawn to a segment of parabola 
with the base AB
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Let’s show its geometrical properties:
If we have a triangle A0B0F , then AC is a perpendicular bisector of A0F
and BC is a perpendicular bisector of B0F . C, the point of their intersection,
must be also the point of a third perpendicular bisector of triangle A0B0F .
This bisector is also the midline of trapezoid AA0B0B.

So we have proved this theorem:
The middle of the base AB of segment of parabola and vertex C

of Archimedes’ triangle lie on a line, which is parallel to the axis.
(1)
In other words:



The median to the base of the Archimedes’ triangle is parallel
to the axis.

Let’s mark the point of intersection of median CS and the parabola p
as P . Let the point of intersection of tangent to parabola at P and AC (BC)
be A1 (B1). We have to show that the point P is the vertex of a segment
of parabola with the base AB (we must prove that A1B1 is parallel to AB)
and is, at the same time, the middle of the median CS.

Let’s consider the triangle APA1. It is the Archimedes’ triangle drawn
to a segment of parabola with the base AP . If we mark the middle of the
base as G, then according to a theorem (1) above, A1G is parallel to the axis
of parabola. A1G is also the midline of triangle ACP . Therefore the point
A1 is the middle of AC.

The same sequence of reasonings we may accomplish for the triangle
BPB1. So B1 is the middle of BC. Then A1B1 is the midline of the triangle
ABC which means that our two conditions (P is a middle of median CS and
A1B1 is parallel to AB) are fulfilled.

We have proved the theorem:
The vertex P of a segment of a parabola with the base AB

is a middle of midline CS of Archimedes’ triangle ABC. (2)
Theorems (1), (2) are another formulation of Archimedes’ propositions 1,

2 mentioned above.

5 Division of the Archimedes’ triangle

In the picture we can see that the tangent A1B1 and chords AP , BP divide
Archimedes’ triangle ABC drawn to a segment of parabola with the base
AB (let’s mark it triangle of 1st level) into four triangles:

• internal triangle APB bounded by the chords AB, AP and BP

• external triangle A1CB1 bounded by the tangents at points A, B and
P

• two residual triangles drawn to the segments with the bases AP and
BP , which are also Archimedes’ triangles (of 2nd level)
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Fig. 6 :  division of the Archimedes' triangle
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For every residual Archimedes’ triangle we can make the division again.
We get four other Archimedes’ triangles of 3rd level. We can repeat this pro-
cess infinitely and by this we can obtain the geometrical sequence of numbers
of Archimedes’ triangles of different levels. There is one internal triangle
corresponding with every Archimedes’ triangle. Simultaneously we get the
same numbers of internal triangles of each level. So we have also the geo-
metrical sequence of numbers of internal triangles of different levels. These
internal triangles will fill up the segment of parabola.

If we mark the area of the Archimedes’ triangle ABC as S, then the
area of corresponding internal triangle is equal to S

2
, because these triangles

have the same base AB and ratio of heights is 2 : 1 (P lies on the midline



of the triangle). In the same ratio there are the areas of internal and external
triangle (they have the same height, the base A1B1 is a half of the base AB).
The residual triangles have the same areas. They have the same base (P
bisects midline A1B1) and the same height (chord AB is parallel to tangent
at P ). Every residual triangle has an area of S

8
.

6 Area of a segment of parabola

If we repeat this consideration, we get geometrical sequence

S,
S

8
,
S

82
, . . .

for the areas of Archimedes’ triangles. We obtain geometrical sequence

S

2
,

S

2.8
, . . . .

for the areas of the internal triangles. Now, it is necessary to add the geome-
trical series of the areas of internal triangles (every area is multiplied by the
number of triangles of each level):

S

2
+ 2.

S

2.8
+ 4.

S

2.82
+ . . .

It is not difficult, we get

S

2
+ 2.

S

2.8
+ 4.

S

2.82
+ · · · =

S
2

1 − 2.1
8

=
2S

3

for the sum.
The Archimedes’ theorem is therefore proved.
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