Monge projection

= orthogonal projections on two mutually perpendicular planes

- \rightarrow The horizontal plane $-\pi$
- \rightarrow *The vertical (frontal) plane v*
- \rightarrow *The folding line* marked x_{12}

= a line of intersection of both projections' planes $x = \pi \cap v$

The orthogonal projection of a point A

The orthogonal projection of a point A into a projection plane is a foot of perpendicular line passing through a point A to a projection plane. This perpendicular line is called *a projecting line* of a point A.

 \rightarrow The horizontal projection (the first projection) of a point A – marked A_1 = the orthogonal projection of a point A into a horizontal projection plane

- \rightarrow *The vertical projection (the second projection)* of a point $A \text{marked } A_2$ = the orthogonal projection of a point A into a vertical (frontal) projection plane
- \rightarrow Projections A_1 and A_2 are called *related views* of a point A.
- \rightarrow *The projector*
 - a line perpendicular to the folding line
 - -a line connecting A_1, A_2

The orthogonal projection of a line a

The orthogonal projection of a line a into a projection plane is a line of intersection of a projection plane and a plane passing through a line a and perpendicular to the projection plane. This plane is called a projecting plane of a line a.

- \rightarrow The horizontal projection (the first projection) of a line $a \text{marked } a_1$ = the orthogonal projection of a line a into a horizontal projection plane
- → *The vertical projection (the second projection)* of a line $a \text{marked } a_2$ = the orthogonal projection of a line a into a vertical (frontal) projection plane

\rightarrow A trace point = the point of intersection of a line with the projection plane

- \rightarrow The horizontal trace point marked P
 - = the point of intersection of a line with the horizontal plane
 - the second projection of the horizontal trace point is always on the folding line

\rightarrow *The vertical trace point* – marked *N*

- = the point of intersection of a line with the vertical plane
- the first projection of the vertical trace point is always on the folding line

The orthographic projection of a plane $\boldsymbol{\alpha}$

A trace line of a plane α = a line of intersection of a plane α with a projection plane

 \rightarrow A horizontal trace – marked p = a line of intersection of a plane α with the horizontal plane

 \rightarrow A vertical trace – marked n

= a line of intersection of a plane α with the vertical plane

- The horizontal trace and the vertical trace intersects each other on a folding line.

- If a line lies in a plane, then its trace points lies on the traces of a plane: the horizontal trace point must lie on a horizontal trace line, the vertical trace point must lie on a vertical trace line.

Special lines in a plane:

 \rightarrow Horizontal lines – marked ¹h

- = lines parallel to the horizontal projection plane
- the first projection is parallel to the horizontal trace
- the second projection is parallel to the folding line
- \rightarrow Vertical lines marked ^{II}h
 - = lines parallel to the vertical projection plane
 - the second projection is parallel to the vertical trace line
 - the first projection is parallel to the folding line

\rightarrow *Lines of steepest slope (steepest lines)*:

- \rightarrow A steepest line with respect to the horizontal projection plane marked ¹s
 - = a line perpendicular to the horizontal lines

- the first projection of this line is perpendicular to the horizontal trace line (as well as to all horizontal lines)

 \rightarrow A steepest line with respect to the vertical projection plane – marked "s

= a line perpendicular to the vertical lines

- the second projection of this line is perpendicular to the vertical trace line (as well as to all vertical lines)