An example of subquasi-order hypergroup

Šárka Hošková

University of Defence Brno, Faculty of Military Technology, Department of Mathematics and Physics, Kounicova 65, Brno e-mail: sarka.hoskova@unob.cz

Abstract

The aim of this contribution is to give an example of subquasi-order hypergroup. By quasi-order hypergroups (order hypergroups) we mean the hypergroups determined by a binary relation of quasiordering (ordering). This special type of hypergroups were introduced in paper of Jan Chvalina: Commutative hypergroups in the sence of Marty and ordered sets.

In the paper [7] special types of hypergroups, so called *quasi-order hypergroups* (\mathbb{QOHG}) and order hypergroups (\mathbb{QHG}), were introduced (cf. also [2, 3, 6, 9]). Recall that a pair (H, \cdot) , where H is a (nonempty) set and $\cdot: H \times H \to \mathscr{P}^*(H) \ (= \mathscr{P}(H) \setminus \{\emptyset\})$ is a binary hyperoperation on the set H such that $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associativity) and $a \cdot H = H = H \cdot a$ (the reproduction axiom) is satisfied for all $a, b, c \in H$, is a hypergroup. Here, for $A, B \subseteq H, A \neq \emptyset \neq B$ we define as usual $A \cdot B = \bigcup \{a \cdot b; a \in A, b \in B\}$, (see, e.g. [2]).

Definition 1. A hypergroup (H, \cdot) such that the conditions

- (i) $a \in a^2 = a^3$ for any $a \in H$,
- (ii) $a \cdot b = a^2 \cup b^2$ for any pair $a, b \in H$

are satisfied is called a quasi-order hypergroup. If moreover the unique square root condition

(iii)
$$a, b \in H$$
, $a^2 = b^2$ implies $a = b$

is satisfied, then (H, \cdot) is called an order hypergroup.

It is to be noted that from (i) and (ii) of Definition 1 there follows the extensivity of the hypergroup (H, \cdot) , i.e. $\{x, y\} \subset x \cdot y$ for all $x, y \in H$. For the preceding definition see [7].

In [6] it was shown that the category of all *order hypergroups* (\mathbb{OHG}) forms a full reflective subcategory of category of all *quasi-order hypergroups* and their inclusion homomorphisms as morphisms (\mathbb{QOHG}).

Definition 2. A commutative hypergroup (H, \cdot) such that the conditions

- (i) $a \in a^2 = a^3$.
- (ii) $a \cdot b \subset a^2 \cup b^2$,
- (iii) $\{a,b\} \subset a \cdot b$

are satisfied for any pair $a, b \in H$ will be called a subquasi-order hypergroup.

The category of all subquasi-order hypergroups with inclusive homomorphisms as their morphisms will be denoted \mathbb{SQOHG} . Thus \mathbb{QOHG} is a full subcategory of \mathbb{SQOHG} .

For $x \in H$ denote [x] < the upper end determined by x, i.e., $[x] < = \{z \in H; x \leq z\}$.

Example 1. By a modification of some examples contained in paragraph 3, chapt. IV[8] we obtain a large class of suborder hypergroups (or subquasi-order hypergroups). For an arbitrary upper semilattice (L, \vee) or especially a lattice (L, \vee, \wedge) let us define a binary hyperoperation

$$: L \times L \to \mathscr{P}^*(L) \ by \ x \cdot y = [x \vee y)_{<} \cup \{x, y\},$$

where " \leq " is the ordering on L determined by the join (i.e. supremum) operation " \vee " or by the usual rule:

$$x, y \in L$$
, $x \leq y$ whenever $x \vee y = y$ and $x \wedge y = x$.

Then with respect to Lemma 1.13 [5] it is easy to see that (L, \cdot) is a commutative extensive hypergroup, more precisely (L, \cdot) satisfies all conditions from Definition 1.

In particular, if S is at least a four element set and $(L, \vee, \wedge) = (\mathscr{P}(S), \cup, \cap)$ then for any pair of singletons $\{x\}, \{y\} \in \mathscr{P}(S)$ we have $\{x\} \cdot \{y\} \subset \{x\}^2 \cup \{y\}^2$ and $\{x\} \cdot \{y\} \neq \{x\}^2 \cup \{y\}^2$. Take e.g. a four element set $S = \{x, y, u, v\}$. Then

$$\{x\} \cdot \{u\} = \{\{x\}, \{u\}, \{x, u\}, \{x, y, u\}, \{x, u, v\}, \{x, y, u, v\}\}$$

$$\{x\}^2 \cup \{u\}^2 = \{\{x\}, \{u\}, \{x, y\}, \{x, u\}, \{x, v\}, \{y, u\}, \{u, v\}, \{x, y, u\}, \{x, y, v\}, \{y, u, v\}, \{x, u, v\}, \{x, y, u, v\}\} .$$

So really $\{x\} \cdot \{y\} \neq \{x\}^2 \cup \{y\}^2$.

Similarly, a subquasi-order hypergroup can be obtained by the sum operation from lattices and quasi-ordered sets which are not ordered sets.

References

- [1] Antampoufis, N.: Contribution to the study of hyperstructures with applications in Compulsory Education, Doctoral Thesis, 206 p., (2008).
- [2] Corsini, P.: Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993.
- [3] Corsini, P., Leoreanu. V.: Applications of Hyperstructure Theory, Kluwer Academic Publishers, Dordrecht, Hardbound, ISBN 1-4020-1222-5, 2003.
- [4] Hošková, Š.: Abelization of weakly associative hyperstructures and their proximal modifications, PhD thesis, MU Brno (2003), 73p.
- [5] Hošková, Š.: Binary hyperstructures determined by relational and transformation systems, University of Ostrava, Habilitation Thesis, 93p., submitted 2008.
- [6] Hošková, Š., Chvalina, J.: The unique square root condition for quasi-order hypergroups and the corresponding reflector for the category of all order-hypergroups, Proc. of International Conference Aplimat 2004, 471–476, Bratislava, Slovakia.
- [7] Chvalina, J.: Commutative hypergroups in the sence of Marty and ordered sets, Proceeding of the Summer School 1994, 16–30, Olomouc, Czech Republic.
- [8] Chvalina, J.: Functional Graphs, Quasi-ordered Sets and Commutative Hypergroups, *MU Brno*, 1995. (in Czech)
- [9] Chvalina, J., Hošková, Š.: Abelization of weakly associative hyperstructures based on their direct squares, Acta Mat. et. Inf. Univ. Ostraviensis, (2003), 11—25.
- [10] Chvalina, J., Chvalinová, L.: State hypergroup of automata, Acta Mat. et. Inf. Univ. Ostraviensis 4 (1996), 105–120.
- [11] Massouros, Ch.: Quasicanonical hypergroups, In. 4th AHA, Xanthi, Greece, 1990, World Scientific, 129–136.
- [12] Račková, P.: Actions of Semihypergroups and Modelling of Hypergroups by Integral Operators, UP Olomouc (2007), Ph.D. thesis, in Czech.