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Abstract. In recitals of this paper there we will be repeated the definitions and main results mentioned
1n [15] without proofs. The definition of the multioperation on partially ordered carrier set in this papers
is idempotent, commutative but not associative operation. In the opening part of this article there we
repeat fundamental definitions and some theorems without proofs. In the next part of this conference
paper we introduce the conceptions of distinguishing, weakly distinguishing subsets and the concept of β
hypergroupoid. Finally some properties of this notions on multigroupoids with a concrete special ordering
of carrier sets are studied..

Key words. Hypersemigroup, binary hyperoperation, hypergroupoid, distinguishing subset, weakly
distinguishing subset,hypergroupoid with the property β. Covering and maximal β covering of hyper-
groupoid.

1 Introduction

1.1 Definition A hypergroupoid (or a multigroupoid) is a pair ( M, ∗) where M
is a nonempty set and ∗ : M × M → P∗(M) is a binary hyperoperation called also a
multioperation. (P∗(M) is the system of all nonempty subsets of M).
A semihypergroup is an associative hypergrupoid, i.e. hypergrupoid satisfying the equal-
ity (a ∗ b) ∗ c = a ∗ ( b ∗ c) for every triad a, b, c ∈ M .

1.2 Introduction We denote by M a partially ordered set M with the ordering ≤
and with the greatest element I which will be inscribed in the next part of this article
with M = (M,≤, I)

1.3 Definition Let xi ∈ M | i ∈ J where J is an index set. By the length r of a
chain we understand the circumstances that the chain consists from r + 1 elements of the
set M and is of the form

x0 −≺ x1 −≺ x2 −≺ . . . −≺ xr [x0, xr]

(where the notation xi −≺ xi+1 means that the element xi is covered by the element xi+1

it is xi < xi+1 and does not exist x ∈ M for which xi < x < xi+1. We define the length
of the partially ordered set (M = (M,≤, I) as

max{rj | where rj, j ∈ J are lengths of chains in M}.
We suppose the partially ordered sets of finite length.
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1.4 Definition We define for arbitrary x, y ∈ M on M = (M,≤, I) the binary hy-
peroperation ◦ as follows:

x ◦ y = { min (X ∩ Y)}.
Where X = {mj | mj ∈ M, x ≤ mj} for all j from index set J and similarly the set
Y = {mk | mk ∈ M, y ≤ mk} for all k from index set K. We inscribe then the set M
with such defined binary operation with M = ( M ≤, ◦, I).

1.5 Lemma The hyperoperation of multiplication ◦ on M = (M ≤, ◦, I) is idempo-
tent.

1.6 Lemma The binary hyperoperation ◦ on M = ( M ≤, ◦, I) is commutative.

1.7 Theorem M = ( M,≤, ◦, I) is commutative hypergroupoid.

1.8 Theorem Let us suppose that the operation ◦ is single-valued for all the elements
of M . Then ◦ is a semilattice operation of supremum and M = ( M,≤, ◦, I) is an upper
semilattice.

Proof. The first affirmation follows from the definition of the multioperation. ◦ for
x ◦ y = { min (X ∩ Y)}. where X ,Y are dual ideals of the elements x, y. (See 1.4). The
operation ◦ satisfies idempotency and commutativity (1.6, 1.7). From the unicity of the
operation there follows the associativity likewise. Hence ◦ = ∨ where ∨ is a semilattice
operation.

1.9 Remark The ordering of the carrier set M characterizes many properties of the
hypergroupoid M = ( M,≤, ◦, I).

2. Some constructions on hypergroupoids with special kinds of
carrier sets .

2.1 Definition Let M,≤, I be a finite partly ordered set with the the ordering ≤
and the greatest element I. Let a, b be a pair of elements of M such that a ≤ b Then we
define as the interval bounded by the elements a and b and denote by [a, b] the set of all
the elements x of M for which a ≤ x ≤ b holds.

2.2 Definition Let M,≤, ◦I be a finite partly ordered multigroupoid satisfying the
Jordan-Dedekind chain condition where the relation of partly ordering is defined as fol-
lows:

x ≤ y for all x and y for which d(y) = d(x)− 1 and x ‖ y if d(x) = d(y).
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Hence x is in the relation ≤ with all its descendants. ( See Fig.1)
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Figure 1

2.3 Definition Let M = ( M,≤, ◦, I) be a hypergroupoid L ⊂ M, u ∈ M . We say
that the elements x, y ∈ M, x 6= y are distinguished by u with respect to L if u ◦ x ⊂ L
and u ◦ y 6⊂ L or u ◦ x 6⊂ L and u ◦ y ⊂ L.
We say that L distinguishes M(f) if for each x, y ∈ M, x 6= y, there is u ∈ M such that
x, y are distinguished by u with respect to L.

2.4 Example Let the partially ordering of the set M = {I, a, b, c, d, e, f, g, h, i, j, k, l,m, }.
Which is given by the graph on the Figure 1. and let the operation x ◦ y where x, y are
arbitrary elements in M is described by knots lying over the double x, y which are con-
nected by edges with them. In the next we will study its the subsets I,H, K, Q according
two relation of distinguishing.

2.5 Affirmation Let M = ( M,≤, ◦, I) be a hypersemigroupoid given in 2.4 and
L = I ∪K ⊂ M . Then L distinguishes M( M,≤, ◦, I).

Proof. Let x, y are arbitrary different elements in M .
a) Let p(x) = p(y). Then it is sufficient to put u = x and after that p(u ◦ x) = p(x)

and p(u ◦ y) = p(y)− 1. This implies that u ◦ x ⊂ L and u ◦ y 6⊂ L or conversely.
b) Let p(x) 6= p(y). Without generality loss we can suppose p(x) < p(y). Then if the
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element x ∈ L and the element y 6∈ L it is sufficient to put u = x and u ◦ x = x ∈ L and
u ◦ y = y 6∈ L. Let us suppose that both elements lie in L. The situation that non of the
elements x, y does not lie in L would be analogous. In this case it is sufficient to choose
arbitrary element z for which p(z) = p(y) and than z ◦ x = z ∈ L and p(z ◦ y) = p(z)− 1
and z ◦ y 6∈ L.
We chose for arbitrary double x, y an element u which distinguishes this double with
respect to L = I ∪K.

2.6 Definition Let M,≤, I be a finite partly ordered set with the greatest element
I. We denote the set of its dual atoms by D. Further we denote by D(x) ⊆ D the subset
containing all elements dj ∈ D, j ∈ J where J is the index set, for which x ≤ dj.

2.7 Definition Let M,≤, I be a finite partly ordered set with the greatest element I
satisfying Jordan-Dedekind Chain condition. We denote by the depth d(a) of the element
a ∈ M the length of the interval [a, I] (especially d(I) = 0). We say that the element y
covers the element x and we write x−< iff x ≤ y and d(y) = d(x)− 1.
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2.8 Definition Let M,≤, I be a finite partly ordered set with the greatest element
I. We say that M satisfies the condition β if for arbitrary two elements x, y ∈ M the
following relation {D(x) ∩D(y)− {I}} 6= ∅ holds. We call then M = ( M,≤, ◦, I) the β
hypergroupoid.

2.9 Lemma Let M = ( M,≤, ◦, I) be a β hypergroupoid. Then the one-point subset
{I} and the set D distinguish M .

Proof. Let x, y are arbitrary elements in M . From the property β then follows the ex-
istence of at least one dual atom d ∈ D for which either x < d and y ‖ d or x ‖ d and
y < d. then either d ◦ x = d 6= I and d ◦ y = I or d ◦ x = I and d ◦ y = d 6= I. Hence both
subsets {I}, D distinguish M .

2.10 Construction Let M = ( M,≤, ◦, I) be a hypergroupoid. We will construct
a maximal β covering CMCMCM of this hypergroupoid by subhypergroupoids which have the
property β. We denote them by CCCMj

Construction. We begin from the maximal element. The first subhypergroupoid will con-
tain all the dual-atoms at first and thereafter all the elements which are forgoers at least
of two dual-atoms. The elements of such constructed subhypergroupoid which is dual
upper ideal can be distinguished with respect to the maximal element I. After this we
continue such that we add to the carrier of this first subhypergroupoid all predecessors
with the property β. The set M is finite. Then there are two possibilities.
1) Al the elements of the carrier set M are earmarked (chosen). In this case the covering
CMCMCM has exactly one suphypergroupoid and it is the given hypergroupoid M = ( M,≤
, ◦, I) itself.
2) There are no further elements for which the further extension of the subhypergroupoid
will fulfil the property beta. We symbolize chosen subhypergroupoid by CCCM1. We choose
arbitrary maximal element sub elements of CCCM1 and we denote it by I2. We assign to this
element I2 all its predecessors as dual atoms of new partially ordered set of the second
subhypergroupoid. It may be that are no predecessors of I2. Then the set carrier of
CCCM2 is only one-point set. If such predecessors exist, we create the second maximal β
subhypergroupoid as well as in the case of CCCM1. The next problem can tur up at the
construction of the third and further subhypergroupoids. By selection of the predecessors
for the third and further maximal elements as dual atoms we suppose only those which
were not exhausted to some previous maximal element. After a fine number of steps the
construction of the maximal β covering CMCMCM is finished. The construction is not single-
valued.This can be seen in the next example.

2.11 Example Let M = ( M,≤, ◦, I) be a hypergroupoid which operation is given at
the figure two. We construct a covering of this hypergroupoid CMCMCM by subhypergroupoids
which we denote by CCCMi

Construction. We begin from the maximal element. The first subhypergroupoid contains
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all the dual-atoms at first and thereafter all the elements which are forgoers at least of two
dual-atoms. After this we continue such that we add to the carrier of this first subhyper-
groupoid which have over them with respect to the ordering ≤ at least two elements. With
respect to finality we finish either at that moment when no element of the given hyper-
groupoid satisfies this condition or all the element are choice into the subhypergroupoid.
In our case the first subhypergroupid CCCM1 is created by the set {I, a, b, c, d, f, g, j}. The
next subhypergroupoids are constructed such that their maximal elements are the irre-
ducible forgoers of the absorbed elements of CCCM1. We take the forgoer of the element a
it is the element e and its dual atom with respect to the ordering ≤ is the element h.
The element e has no other dual atoms and hence no forgoers which would be forgoers
of other dual atoms. Such the second subhypergroupoid CCCM2 creates the set {e, h}. The
further irreducible elements are l, i, k. The sentence of the choice features forms of the
particular subhypergroupoids. We have three possibilities of choice, we do all of them.

Let e be the maximal element of the third subhypergroupid. This one has only one dual
atom and it is the element p. Such CCCM3 contains only two elements l, p.

The following maximal element can be i. Its dual atoms are the elements m, n, o and
their only non-exhausted sequential element is q and hence the carrier set of the fourth
subhypergroupoid is {i, m, n, o, q}

Finally the last element k forms also the last subhypergroupoid CCCM5 has only one
point set {k}.
The other ordering of the further irreducible elements can be i, e, k. When we create
the superhypergroupids we obtain as the set carrier of CCCM3 the set {i, m, no, p, q} and
CCCM4 and CCCM5 are one point superhypergroupids, in the concrete they are created by one
element sets {e} and {k}.

2.12 Definition Let M = ( M,≤, ◦, I) be a hypergroupoid,L ⊂ M we say that the
subset L weakly distinguishes the set M when for every two different elements x, y ∈ M
there exists an element u ∈ M for which either u ◦ x ∩ L 6= ∅ and u ◦ y 6⊆ L or u ◦ x 6⊆ L
and u ◦ x ∩ L 6= ∅.

2.13 Affirmation Let M = ( M,≤, ◦, I) be a hypergroupoid which operation is given
by the ordering of carrier set at the figure two. Let CMCMCM be a disjunctive covering of the
set M . We construct the set L such that we choose from every CCCMj ∈ CMCMCM its greatest
element. Then the subset L weakly distinguishes the given hypergroupoid M.

Proof. The construction of the covering is not single-valued. In the next we suppose these
CCCMi:
1) CCCM1 = {I, a, b, c, d, f, g, j},
2) CCCM2 = {e, h},
3) CCCM3 = {i, m, n, o, pq},
4) CCCM4 = {k},
5) CCCM4 = {l}.
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Then the weakly distinguishing set for this covering is L = {I, e, i, k, l}.
We prove the affirmation such that we find and print into the table for every two

elements x, y ∈ M one element u ∈ M for which either ((u ◦ x) ∩ L 6= ∅) ∧ (u ◦ y 6∈ L) or
(u ◦ x 6∈ L) ∧ ((u ◦ y) ∩ L 6= ∅). For u printed as bold face it concludes only to weakly-
distinguishing by L.

I a b c d e f g h i j k l m n o p q

I a b c d a f g a b b g h b b b b b

a a a a e f g e b b a l b b b b b

b b b b c c a m c c a c c c c c

c f a b d a b b d a b b b b b

d a b c a b b b a a b b b b

e a b l b b d h b b b b b

f b a m d b a d d d d d

g c m b m a a a a a a

h a a a p a a a b b

i d b a p p p a m

j m a p p n a p

k a b b q o a

l a a a b a

m n m a n

n n a c

o a m

p a

q

Table 1

2.14 Theorem Let M = ( M,≤, ◦, I) be a hypergroupoid, CMCMCM arbitrary covering of
M constructed by the construction 2.10. We denote the maximal element of CCCMj | j ∈ J

where J is the index set as Ij. Let L =
⋃
j∈J

Ij. Then the subset L weakly distinguishes

the set M .
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Proof. We choose two different elements x, y ∈ M .
a) At first we will suppose that both elements lye in the same CCCMj0.
i) We will study the case x ◦ y ∩ L = ∅ then with respect to the condition of the

construction of the covering there exists a dual atom dj0 in CCCMj0 such that x ≤ dj0 and
y ‖ dj0. Then it is sufficient to put u = dj0 and we have u ◦ x = dj0 ◦ x = dj0 = dj0 6∈ L
and u ◦ y = dj0 ◦ y = Ij0 ∈ L.

ii) We entertain the second possibility, it is x ◦ y ∩ L 6= ∅. Then x ◦ y = I − j0. The
elements x, y are other hence at least one of them is not equal to IJ0, for example x and
we put d = y. Hence d ◦ y = x ◦ y = Ij0 and d ◦ y = y ◦ y = y 6 Ij0.

b) Hereafter we will suppose that the elements x, y lye in other subhypergroupoids,
in particular x ∈ CCCMj1, y ∈ CCCMj2. Let both of them lye in L, it is x = Ij1, y = Ij2. We
subdivide this part of the proof into two fractions.

i) At first we will suppose that x < y. Then there exists an element z ∈ M for which
x < z < y holds. Simultaneously from the construction of the covering of CMCMCM follows
that z 6∈ L We can put u = z and we obtain u◦x = z◦x = z 6∈ L and u◦y = z◦y = y ∈ L.

ii) The next possibility is that x ‖ y (the elements x, y are incomparable). Now let
(x ◦ y) ∩ L = ∅. Then it is sufficient to put either u = x or u = y. More complete is the
situation when (x ◦ y) ∩ L 6= ∅. We can choose a concrete element Ij0 ∈ x ◦ y and to this
one we can find an element z, z−≺ Ij0, z 6∈ L, x < z, z ‖ y for which x ◦ z = z 6∈ L and
Ij0 ∈ z ◦ y. We have found u(= z) for which u ◦ x 6∈ L and (u ◦ y) ∩ L 6= ∅.

Now let exactly one of the elements x, y lyes in the subset L. For example x. Let
(x ◦ y) ∩ L 6= ∅ Then it is sufficient to put u = y and u ◦ x = y ◦ x and (y ◦ x) ∩ L 6= ∅
simultaneously u ◦ y = y ◦ y 6∈ L. The second possibility is (x ◦ y) ∩ L = ∅. Now we put
u = x and we obtain u ◦ x = x ◦ x = x ∈ L and u ◦ y = x ◦ y. Hence (x ◦ y) ∩ L = ∅.

Finally we suppose that no of the elements x, y lyes in L. Then if (x ◦ y) ∩ L 6= ∅
it is sufficient to put either u = x or u = y. It remains the event (x ◦ y) ∩ L = ∅. From
the construction of CMCMCM there follows the existence of Ij1 ∈ CCCMj1 for which x < Ij1 and
Ij2 ∈ CCCMj2 such that y < Ij2. We obtain from the definition of the operation ◦ on hy-
pergroupoid M that Ij1 ◦ Ij2 ⊆ Ij1 ◦ y ⊆ x ◦ y and similarly Ij1 ◦ Ij2 ⊆ x ◦ Ij2 ⊆ x ◦ y.
Hence we can put u = either Ij1 or Ij2 and we obtain u ◦ x = Ij1 ◦ x = Ij1 ∈ L and
u ◦ y = Ij1 ◦ y ⊆ x ◦ y where (x ◦ y) ∩ L = ∅. The u = Ij2 selection brings analogous
results.
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[13] KATRIŇÁK, T. and COL.: Algebra and Theoretical Arithmetic (1). Alfa Bratislava,
SNTL Praha,1985.

[14] ROSENBERG, I.G. Hypergroups and join spaces determined by relations. Italian
Journal of Pure and Applied Mathematics, no 4, (1998), 93-101.

[15] ZAPLETAL, J. Hypergroupoids on Partially Ordered Sets. Proceedings of the Fourth
mathematical workshop on FAST VUT in Brno, (2005) 115 - 116.

9


