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In this contribution we investigate the asymptotic behavior for k → ∞ of the solutions of
the system of m difference equations

∆u(k) = F (k, u(k)) (1)

where k is the independent variable assuming values from the set N(a) := {a, a + 1, . . . } with
a fixed a ∈ N, u = (u1, . . . , um), ∆u(k) = u(k + 1) − u(k), and F : N(a) × Rm → Rm, F =
(f1, . . . , fm).

Our aim is to find sufficient conditions with respect to the right-hand side of system (1) which
guarantee the existence of at least one solution u(k) = (u∗

1(k), . . . , u∗
m(k)), k ∈ N(a) satisfying

(k, u∗
1(k), . . . , u∗

m(k)) ∈ Ω(k),

where
Ω(k) := {(k, u) : k ∈ N(a), bi(k) < ui < ci(k), i = 1, . . . ,m}

with bi, ci : N(a) → R, i = 1, . . . ,m, being auxiliary functions such that bi(k) < ci(k) for each
k ∈ N(a). (Such set Ω is called a polyfacial set.)

In paper [1] the above described problem is solved via Liapunov type technique. Here we
combine this technique with the retract type technique which was used in paper [2].

To avoid defining too many new notions, we present the main result in a slightly different
way than it is stated in the full version of this contribution.

Theorem 1 Let bi(k), ci(k), bi(k) < ci(k), i = 1, . . . ,m, be real functions defined on N(a) and
let fi : N(a)× Rm → R, i = 1, . . . ,m, be functions that are continuous with respect to all their
arguments except the first one. Suppose that there exists a fixed index j ∈ {1, . . . ,m} for which
the following condition holds:
If (k, u) ∈ ∂Ω(k) is a point such that uj = bj(k), then

fj(k, u) < bj(k + 1)− bj(k),

and if (k, u) ∈ ∂Ω(k) is a point such that uj = cj(k), then

fj(k, u) > cj(k + 1)− cj(k).



Further suppose that for every (k, u) ∈ Ω(k) and i = 1, . . . ,m, i 6= j,

bi(k + 1) < ui + fi(k, u) < ci(k + 1).

Then there exists a solution u = (u∗
1(k), . . . , u∗

n(k)) of system (1) satisfying the inequalities

bi(k) < u∗
i (k) < ci(k), i = 1, . . . ,m, (2)

for every k ∈ N(a).

The proof of this theorem is performed by a contradiction. We suppose that there exists no
solution satisfying inequalities (2) for every k ∈ N(a). Under this supposition we prove that
there exists a continuous mapping (a retraction) of a closed interval onto its both endpoints
which is, by known facts, impossible.

The previous result can be applied to prove that there exists a positive and bounded solution
of the discrete delayed equation

∆u(k + n) = −p(k)u(k) (3)

where k ∈ N(a) is the independent variable and n ∈ N, n ≥ 1, is the fixed delay. The function
p : N(a) → R is supposed to be positive.

Theorem 2 Let a ∈ N and n ∈ N be fixed. Suppose that there exists a constant θ ∈ [0, 1) such
that the function p : N(a) → R satisfies the inequalities

0 < p(k) ≤
(

n

n + 1

)n

·
(

1
n + 1

+
θn

8k2

)
for every k ∈ N(a). Then there exists a solution u = u(k), k ∈ N(a) of equation (3) such that
for k sufficiently large the inequalities

0 < u(k) <
√

k ·
(

n

n + 1

)k

hold.

To prove this theorem, we first rewrite the delayed equation (3) to a system of n + 1 first
order difference equations and then we show that this system satisfies all the assumptions of
Theorem 1.
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