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Abstract

Reproducing kernel hierarchical partition of unity method (RKHPUM) together with
Smooth particle hydrodynamic method (SPHM), Element free Galerkin method (EFGM),
Generalized finite element method (GFEM) belongs to meshless methods. These numerical
methods have been developed and studied during last thirty years. It is characteristic for
them that, in opposite of the FEM, they do not require any explicit mesh in the begining
of computation. The fact that no mesh has to be generated we appreciate in the solution
of 3D structural mechanics problems, when we deal with large deformations, when we solve
problems with singularities or problems with moving boundaries.

We present the Reproducing kernel hierarchical partition of unity method in this arti-
cle and we find the solution of the Neuman’s and Dirichlet’s boundary value problems for
Helmholtz equation by means of this method.

1 Introduction

If engineers need to solve some practical boundary problem they probably reach for FEM. The
first task when it comes to the realization of this method is to choose proper mesh. It can
bring sometimes a lot of difficulties. For instance, in case when we are solving problems for
large deformations, it is often necessary to overmesh the domain during the computation. Also
creating structured meshes for three-dimensional FEM analysis of solids can be difficult and
time consuming. Therefore, there is considerable interest in exploring methods of numerical
analysis that avoid or greatly simplify this meshing task.

Meshless methods reproduce new approach to numerical solving of boundary value problems.
The unknown solution of the given boundary value problem u is approximated by uh over
arbitrary spaced nodes (particles) x1, x2, . . . , xN ∈ Ω. The approximation uh has form

uh(x) =
N∑

I=1

ΨI(x)uI

where ΨI(x) are shape functions and uI are nodal parameters. This approximation seems to
be the same as in FEM. But there are some differences between the FEM and the meshless
methods. This differences are based on in the manner of construction of the shape functions
and their properties. Namely, the functions ΨI depend only on points x1, x2, . . . , xN and not on
explicit mesh. Owing to this the approximation uh in conjunction with collocation or Galerkin
method provides a mesh-free computational formulation.

Also the RKHPUM is in principle connection semidiscrete Galerkin method and shape func-
tions, that are constructed by means of moving least square method.



2 Neuman’s boundary value problem

We consider the next boundary value problem

u′′(x) + 162u(x) = x, u′(0) = u′(1) = 0 (1)

that has the analytical solution

uexact = − 1
163

sin 16x− 1
163

cos 16− 1
sin 16

cos 16x +
x

162
.

We find the weak solution of the problem (1). It means we find a function u ∈ W 1,2(0, 1) such
that

−
∫ 1

0
(u′v′) dx + 16

∫ 1

0
uv dx =

∫ 1

0
xv dx ∀v ∈ W 1,2(0, 1). (2)

The numerical solutions received by means of the FEM, when we take n = 8, 11, 32, 64 nodes
and when we consider linear ”hat” functions as the basis functions, are given in Figure 1.

Figure 1: FEM - the approximation and the exact solution

Dependence the error e = |uexact − uFEM | on the number of nodes is given in Table 1.

n = 8 11 32 64 91
e ≤ 2.10−3 22.10−4 25.10−4 3.10−4 14.10−5

Table 1: The error e = |uexact − uFEM |



We focus our attention on the RKHPUM now. We do our computation for N particles
x1, . . . xN . Suppose the numerical solution in form

U(x) =
N∑

I=1

Ψ0
I(x)U0

I +
N−1∑
I=2

Ψ1
I(x)U1

I , (3)

where Ψ0
I(x), Ψ1

I(x) are shape functions built for the first order polynomial basis (1, x), the
dilatation paremetr R = 0.3 and the weight function

Φ(x) =
{

1− 2x2 + x4 |x| ≤ 1
0 otherwise

.

It holds, that

Ψ0
I(x) = p

(
x− xI

R

)
b0(xI) φ

(
x− xI

R

)
,

Ψ1
I(x) = p

(
x− xI

R

)
b1(xI) φ

(
x− xI

R

)
The vectors b0, b1 are solutions of the linear systems

M(x)b0 = (1, 0)T , M(x)b1(x) = (0, 1)T

with

M(x, y) =
(

m0(x) m1(x)
m1(x) m2(x)

)
,

mi(x) =
∫ 1

0
(y − x)iΦ(

y − x

R
) d y, i = 0, 1, 2.

Substitution the (3) into the weak formulation (2) leads to the system of linear equations

A U = f,

where U = (U0
1 , ..., U0

11, U
1
2 , ..., U1

10)
T ,

f = (f0
1 , , .., f0

11, f
1
2 , ..., f1

10)
T , fα

I =
∫ 1

0
fΨα

I dx, α ∈ {0, 1},

and if we denote Ψα
I,k = ∂ΨI

∂xk
,

A =
(

A0,0 A1,0

A0,1 A1,1

)
, Aα,β

I,J =
∫ 1

0
(162Ψα

I Ψβ
J −Ψα

I,kΨ
β
J,l) dx, α, β ∈ {0, 1}.

The exact solution and the solutions received by means of the RKHPUM for N = 8, 11 particles
are given in Figure 2.
Dependence the error e = |uexact − uFEM | on the number of particles is given in Table 2.

n= 8 10 11
e ≤ 7.10−4 14.10−5 8.10−5

Table 2: Dependence the error e = |uexact − uRKHPUM | on N .



Figure 2: RKHPUM - the approximation and the exact solution

3 Dirichlet’s boundary value problem

Consider the problem
u′′(x) + 162u(x) = x, u(0) = u(1) = 0. (4)

It has classical solution
uexact =

1
162

x sin (16)− sin (16 x)
sin (16)

.

We solve the Dirichlet’s boundary problem by means the RKHPUM now. We find a weak
solution of the equation (4). It means we find a function u ∈ W 1,2

0 (0, 1) such that

−
∫ 1

0
(u′v′) dx + 162

∫ 1

0
uv dx =

∫ 1

0
xv dx ∀v ∈ W 1,2

0 (0, 1). (5)

We suppose the same polynomial basis, the same dilatation parametr and the same weight func-
tion as in the previous section. Our approximation has the value described on the boundary. But
approxinmative functions based on the moving least squares method do not exactly reproduce
essential boundary conditions since they use base functions that are not strictly interpolants. It
means, that there can be nodes xJ on boundary where ΨI(xJ) 6= δIJ . Consequently,

uh(xJ) =
∑

I

ΨI(xJ)uI 6= uJ .

One possibility, how to put this problem in order, is to work with the moment matrix

M(x, y) =
(

m0(x) m1(x)
m1(x) m2(x)

)
,

mi(x) =
∫ 1

0
(x− 3x− x2)2(

y − x

R
)iΦ(

y − x

R
) d y, i = 0, 1, 2,

and new shape functions

Ψ0
I(x) = p

(
x− xI

R

)
b0(xI)(x− 3x− x2)2 φ

(
x− xI

R

)
,

Ψ1
I(x) = p

(
x− xI

R

)
b1(xI)(x− 3x− x2)2 φ

(
x− xI

R

)
The solution that we receive for N = 6, 8 particles is given in Figure 3.
Depencence the error e = |uexact − uRKHPUM | on the number of nodes is given in Table 3.



Figure 3: The RKHPUM approximation and the exact solution

n= 6 8 11
e ≤ 8.10−5 6.10−5 2.10−5

Table 3: Dependence the error e = |uexact − uRKHPUM | on N .

4 Conclusion

We saw in given examples that the RKHPUM gives very good results. Received numerical
solutions coresponds very well with character of the exact solutions. The errors are small for
small number of particles. The problem is only with imposition of natural (Dirichlet) boundary
condition.
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[1] I. Babuška, U. Banerjee, J.E. Osborn, Survey of meshless and generalized finite element
mehods: Anunified approach, Acta Numer. (2003) 1-125

[2] T. Belytschko, Y. Lu, I. Gu, Element-Free Galerkin Methods, Internat. J. Numer. Methods
Engrg. 37 (1994) 229-256

[3] T. Belytschko, Y. Guo, W.K. Liu, A unified stability analysis of meshless particle methods,
Internat. J. Numer. Methods Engrg. 48 (2000) 1359-1400,

[4] J.S. Chen, C. Pan, C.T. Wu, W.K. Liu, Reproducing kernel particle methods for large
deformation analysis of non-linear structures, Comput. Methods Appl. Mech. Engrg. 139
(1996) 195-227

[5] J.S. Chen, C. Pan, C.T. Wu, Large deformation analysiss of rubber based on a reproducing
kernel particle methods, Comput. Mech. 19 (1997) 211-227

[6] J.S. Chen, Ch.T. Wu, S. Yoon, Nonlinear version of stabilized conforming nodal integration
for Galerkin meshfree methods, accepted by International Journal for Numerical Methods
in Engeneering (2001)
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[15] T. Strouboulis, I. Babuška, K. Copps, The design and analysis of the generalized finite
element method, Comput. Methods Appl. Mech. Engrg. 181 (2000) 43-69


