Numerical methods for integral equations arising in modelling of radiosity problems
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   In [2,9] problems of radiative transfer have been examined, whose mathematical model are systems of algebraic equations. The goal of this paper is to present these problems of the radiosity which are reducible to integral equations of the Fredholm type and their systems. Basic equations of radiative heat transfer have been presented with typical Dirichlet and Neumann boundary conditions [2,3]. In this report we consider  the equation
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where S is a given domain, k(r, r’) is a kernel of that equation, f(r) is a given function and  y(r) is unknown solution (radiance L, radiance monochromatic density l or heat flux density p). By discretization methods and projection methods equation (1) can be reduced to a system of algebraic equations [3-7]. We restrict to discretization method, Galerkin method, collocation method and method of special kernels that are applied in various problems of electrical engineering and particularly in the radiosity problems.
1. Discretization method
The presented method most frequently used to solve Fredholm integral equations in widely understood electrical engineering is the method of discretization is discussed below.
By a partition domain S for N elements (S1, (S2, (, (SN  we can get 
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Assuming, that a function y(r) is constant in every element (Sn and it is equal yn  we obtain
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Putting  rm
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(Sm and introducing notation  f(rm,) = fm m=1, 2, (,N, we get the system of algebraic equations:
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,      m = 1, 2, (, N,                                        (4)

Calculating y1, y2, (, yN  being values of the function  y(r) at elements (S1, (S2, (, (SN, the solution of equation (1) is determined in domain S  by (3).

2. Projection methods
    A solution of equation (1) in the projection method we seek of the form
yn(r) = 
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where numbers Ck  are solution of the special system of algebraic equations connected with the basis functions
 (k (r) and a deviation 
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 defined in the following way
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     On dependence of chosen numbers 
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 and on selection of basic functions in (5) we get Galerkin method or collocation method.

2.1. Galerkin method
   In this method basis functions 
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Here the numbers Ck  are calculated from the orthogonality conditions
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which lead to a system of algebraic equations
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2.2. Collocation method
The analyzed method is based on formula (5) in which basis functions are linear independent and the numbers Ck  are choosen from the conditions 
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providing to the following system of  algebraic equations
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where
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 EMBED Equation.3  [image: image25.wmf]'

)

'

(

)

'

,

(

dS

r

r

r

k

k

j

j







3. Remarks
Previously, integral equations of the type (1) were also solved with the use of variation methods [10]. The review of special cases (cavities, parallel surfaces, cylinder with plane, etc.) has been included in [9]. Presented  methods are projection methods and lead to a system of algebraic equations. The discretization method [8] has been presented in closer detail, as its simplicity means it is often used in electrical engineering. It allows solving systems to be created for algebraic equations.. However, methods which guarantee higher accuracy require a series of notions related to the theory of linear functional spaces and more complex calculations to be used.

Bibliography
[1]  Daun K. J., Hollands K.G.T.: Infinitesimal-area radiative analysis using parametric surface representation through NUBRS, ASME Journal of Heat Transfer, vol.123, no.2, pp. 249-256, 2001.

[2]   Domke K. Hącia L., Metody rozwiązywania równań opisujących wymianę radiacyjną, IX Konferencja
        ZkwE, 2004 Poznań, 373-376.
[3]   Hącia L., Applications of integral equations in the elasticity theory, Studies and Materials VIII, 1-2 (1989), 278-297.

[4]   Hącia L.,: Approximate methods for some types of integral equations and integral inequalities and their
        applications, Rozprawy 367, Wydawnictwo Politechniki Poznańskiej, Poznań 2002, pp.131 (in Polish).

[5]   Hącia L., Domke K., Metody rozwiązywania równań całkowych Fredholma w zagadnieniach radiacyjnej 
        wymiany ciepła, XI Konferencja ZKwE 2006, Poznań, 309-310.
[6]  Hącia L., Domke K., Fredholm integral equations in radiative heat transfer problems, Zeszyty Naukowe Politechniki Poznańskiej – Elektryka 2006 ( in print).
[7]   Hildebrand F. B.: Methods of Applied Mathematics. Prentice Hall, Englewood Cliffs, NJ, 1952.

[8]   Krakowski M.: Elektrotechnika teoretyczna t.II, Pole elektromagnetyczne, PWN Warszawa – Poznań, 1979. 

[9]   Modest M. F.: Radiative Heat Transfer. Academic Press, Amsterdam, 2003.

[10] Sparrow E. M, Haji-Sheikh A.: A generalized variational methods to radiation heat transfer calculations. ASME Journal of Heat Transfer, vol.87, pp. 103-109, 1965.
_1217965796.unknown

_1218000707.unknown

_1218006330.unknown

_1218025531.unknown

_1220979123.unknown

_1218025517.unknown

_1218000847.unknown

_1218005977.unknown

_1218005892.unknown

_1218000799.unknown

_1217966205.unknown

_1217967255.unknown

_1217967266.unknown

_1217967629.unknown

_1217966713.unknown

_1217966185.unknown

_1217964330.unknown

_1217965666.unknown

_1217965781.unknown

_1217965479.unknown

_1217441933.unknown

_1217442557.unknown

_1217442611.unknown

_1199720941.unknown

_1217422440.unknown

