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Abstract

The contribution deals with modeling of flow in vaneless machines. The Navier-Stokes system
of equations for incompressible liquid is used. Due to different roughness of the machine inner
surfaces a special boundary condition of friction type is proposed. To show its consistency
to the model, the weak formulation of stationary problem is derived and existence of the
solution is proved.

1 Introduction

Vaneless machines powered by power water or pressure air are used in various areas of tech-
nology. Let us mention rotating washing brush, drilling machines, small water power stations
etc. Although the efficiency of these machines is not too high they became popular for their
simplicity, reliability and low price.

Principle of the vaneless machines is the following. The rotor on a shaft in bearings is axially
symmetric, usually its surface is a part of a cone or a cylinder. The working medium flows
around the rotor such that trajectories of its particles are screw curves. Due to viscosity the
fluid transfers part of its kinetic energy to the rotor. To increase the efficiency the surface of
the rotor is rough while the surface of the static parts is smooth.

Besides materials of MiRiS and SETUR company there are few materials dealing with flow
in vaneless machines. In [5] J. Pelant set up the model and carried out numerical simulations for
machines driven by pressure air. For compressible fluid the model uses the non-slip condition.

In the contribution a model of water flow in the machine is proposed. The differential
equations are completed with a special friction type boundary condition. They are inspired by
similar condition in [2]. To show consistency of this condition to the Navier-Stokes system of
equations the weak formulation of the problem is derived and existence of the solution is proved.

2 Selection of the model

We shall confine modeling to working space of the machine around conic surface of rotor where
the flow of working medium transfers part of its kinetic energy to the rotor. Since we shall deal
with vaneless machines driven by power water, we adopt assumption of incompressible fluid flow.

The simplest model would assume inviscid flow. But in the vaneless machines due to axial
symmetry, the pressure of the flowing medium cannot transfer its kinetic energy to the rotor in
contrast to classical motors with vanes, thus model of ideal inviscid fluid cannot be used and
viscosity of the medium must be assumed. Motion of viscous fluid is modeled by the Navier-
Stokes system of equations.

For viscous liquids the non-slip condition on the wall is usually prescribed. The condition
requires zero diference between velocity of liquid u on the liquid surface and velocity ub of the



wall: u − ub = 0. Nevertheless, such condition pays no attention to the roughness of the wall
which plays important role in the vaneless machines and thus is unrealistic.

To describe this situation we propose a friction type boundary condition T t = −µ0 ·(u−ub)
saying that the tangent stress T t of liquid acting on the wall is proportional to difference of the
liquid velocity and velocity of the wall. This linear dependence can be generalized to nonlinear
dependence with a continuous positive function g(ξ)

T t = −g(|u− ub)|) · (u− ub) . (1)

To show that this condition is consistent with the model, we shall study existence of the weak
solution.

3 System of differential equations

Motion of viscous incompressible liquid is described by the the Navier-Stokes system of equations,
see e.g. [1],[3],[6]. We shall use the Einstein convention on summation over repeated indices, i.e.
fjuj means

∑3
j=1 fjuj . In the orthogonal coordinates x = (x1, x2, x3) the unknown velocity

vector function u = (u1, u2, u3) and scalar pressure function p satisfy the scalar continuity
equation and the vector balance equation
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where ρ denotes the constant density. The stress tensor τ = (τij) is connected with the velocity
by the relation τ = (−p + λ div u)I + µ

(
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)
with constants λ, µ. For incompressible

liquid due to the continuity equation the relation is simplified to
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Using the preceding relation we obtain vector equation (ν = µ/ρ)
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We shall deal with the space between static surface of the machine denoted by Γws and rotating
axis symmetric conic surface of the rotor denoted by Γwr. Further the modeled volume of liquid
denoted by Ω is bounded by inlet surface Γin and the outlet surface Γout. The unit normal
vector to the boundary ∂Ω of the domain will be denoted by n = (n1, n2, n3).

On the inlet part of the boundary Γin the velocity vector is prescribed u = ub. On the
outlet part of the boundary Γout zero normal force τijnj = 0 and the pressure p = pout can be
prescribed. On the walls Γw = Γws ∪ Γvr zero normal component of velocity u · n = 0 and the
friction condition (1) is prescribed.

To show that the proposed condition (1) on Γw is consistent to the Navier-Stokes equations
we shall study existence of the weak solution. The introduced outlet condition causes difficulties
in proof of coercivity even with the classical non-slip condition u = ub on Γw. Thus for proof
of existence of solution on Γout we replace that condition by the same condition u = ub as on
Γin. Thus vector function ub is defined on the whole ∂Ω. Summary of the boundary conditions
yields condition (1) on Γw and

u = ub on Γin ∪ Γout , u · n = 0 on Γw . (5)



4 Integral identity

To derive integral identity we multiply the i-th balance equation with the i-th component vi of
a test vector function v = (v1, v2, v3), and integrate over domain Ω the sum over i∫
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We integrate two integrals by parts∫
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Since the velocity vector u should satisfy the continuity equation, the test function v is supposed
to satisfy div v = 0 in Ω as well and the last integral in (7) vanishes. Due to boundary conditions
(5) we choose also vi = 0 on Γin ∪ Γout and vini = 0 on Γw. Thus the integral vanishes over ∂Ω
in (7) and the surface integral of (6) vanishes over Γin ∪ Γout.

Friction condition on the wall. On the boundary Γw the stress vector equals to T = τ ·n,
i.e. (T )i = τijnj . Using (3) with a tangent vector t and boundary condition (1) we obtain

T · t = τijnjti = µ
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since δijnjti = 0 and ∂uj

∂xi
njti = 0 due to ujnj = 0 around Γw. Thus for test function v satisfying

v · n = 0 on Γw we obtain∫
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Denoting the scalar product in L2(Ω,R3) by (u,v) =
∫
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we obtaine the following integral identity(
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+ b(u,u,v) + a(u,v) + 〈G(u− ub),v〉 = (f ,v) . (8)

5 The stationary problem

According to the continuity equation and boundary conditions (5) we choose the following
Sobolev space

Hdiv =
{
v ∈ H1,2(Ω,R3) | div v = 0 in Ω

}
,

a space for test functions v and a linear set for solution u

V0 = {v ∈ Hdiv | v = 0 on Γin ∪ Γout, v · n = 0 on Γw} ,

Vb = {u ∈ Hdiv | u = ub on Γin ∪ Γout, u · n = 0 on Γw} .



Now we can define weak solution to the stationary problem:
Vector function u ∈ Vb is called weak solution to the stationary problem if

a(u,v) + b(u,u,v) + 〈G(u− ub),v〉 = (f ,v) ∀v ∈ V0 .

The solution u is in set Vb which is not a linear space. To enable using of abstract existence
theorem we translate the problem by u := u∗ + U using a vector function U ∈ Vb ⊂ Hdiv i.e.
satisfying (5).

Then we look for u∗ + U , such that u∗ ∈ V0 and for all v ∈ V0

a(u∗ + U ,v) + b(u∗ + U ,u∗ + U ,v) + 〈G(u∗),v〉 = f(v) . (9)

Existence of the solution can be proven using the following theorem, see [4]:
Theorem Let V be a separable reflexive Banach space and A : V → V ∗ an operator which is

— weakly continuous, i. e. vn ⇀ v ⇒ A(vn) ⇀ A(v) ,

— and coercive, i. e. lim‖u‖→∞
〈A(u),u〉
‖u‖ = ∞.

Then the equation A(u) = F admits a solution for any F ∈ V ∗.

The proof of existence of solution to the stationary problem consist in verifying the assump-
tions of the theorem by means of e.g. results of [4].

Denoting paring of spaces V ∗
0 and V0 by 〈·, ·〉, the identity (9) can be rewritten to the operator

equation A(u) = F by setting

〈A(u),v〉 = a(u∗,v) + b(u∗;u∗,v) + b(u∗;U ,v) + b(U ;u∗,v) + +〈G(u∗),v〉

〈F,v〉 = (f ,v)− a(U ,v)− b(U ;U ,v) .

The space V0 is a separable reflexive Banach space. Continuous bilinear forms are weakly
continuous. Due to compact imbedding W 1,2(Ω) ⊂⊂ L4(Ω) weak convergence of ui in W 1,2(Ω)
yields strong convergence of ui in L4(Ω) and weak continuity of trilinear forms follow since they
are linear in ∇u.

Concerning coercivity the leading bilinear form is elliptic and the other terms do not violate
this coercivity. Indeed, the “new” term 〈G(u∗),u〉 is nonnegative, b(u∗;u∗,u∗) = 0, see e.g.
[3], and by a special choice of “small” U ∈ Vb constructed by means of a cut off function, see
e.g. [3], also the remaining trilinear forms with U can be made arbitrary small and the result
follows.

6 Conclusion

For modeling of the flow in vaneless machines we proposed a new friction type boundary con-
dition for incompressible viscous liquid. The condition contains the continuous nonnegative
constitutive function g(ξ). The case g = ν0 yields linear dependence, g = 0 free surface of the
liquid and the limit g = ∞ the non-slip condition.

In the contribution we proved existence of the weak solution to the problem, thus the pro-
posed condition seems to be consistent with the Navier-Stokes system of equations.

Let us mention that using technique introduced in [3] also existence of the weak solution to
the corresponding evolution initial boundary value problem can be proved by Rothe functions
technique.

Role of the proposed friction type condition will be further studied by numerical experiments
and comparison to the real vaneless machines.
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