
A Contribution to Using MATLAB in Teaching Numerical

Methods at Technical Universities

Michal Novák
Brno University of Technology,

Faculty of Electrical Engineering and Communication,
Department of Mathematics
e-mail: novakm@feec.vutbr.cz

Abstract

The text makes a contribution to the issue of reasons for and ways of using computers
in teaching mathematics. I focus on the subject of using MATLAB in teaching numerical
methods. I also comment on some typical misconceptions and prejudices in (students’)
attitude towards algorithm development in practical classes. The contribution is set in the
background of FEEC BUT.

1 Introduction

Numerical methods in mathematics are an integral part of training prospective engineers. Due
to its often lengthy computations students usually label it as uninspiring and mechanical part
of mathematics where no creative abilities are needed. They also point out that no true practice
can be performed as curricula are tight. Yet this prejudice can be turned into an advantage as
the nature of numerical methods makes it ideally suitable for computer-aided teaching.

In the bachelor student programmes at the Faculty of Electrical Engineering and Communica-
tion, Brno University of Technology, numerical methods are the subject matter of Mathematics 3
(abbreviated as BMA3 for attended form of study, KMA3 for combined form of study). It is
taught in the winter term of the second year of study and is compulsory for all students. The
subject matter1 is evenly distributed between probability theory and statistics, and numerical

1The Mathematics 3 numerical methods block includes:

1st lecture: Banach theorem, Iteration methods of systems of linear equations

2nd lecture: Interpolation polynomials, Spline functions

3rd lecture: Least-square method, numerical differentiation

4th lecture: Numerical integration – trapezoid and Simpson methods

5th lecture: Solution of partial differential equations: Euler method and its modifications, Runge-Kutta methods

6th lecture: Solution of partial differential equations: Euler method for system of differential equations, Finite-
difference method

1st practical: Locating roots, Bisection method, Regula falsi method (not lectured)

2nd practical: Newton and Iteration methods (not lectured)

3rd practical: Systems of non-linear equations, Interpolation polynomials (Lagrange and Newton polynomials)

4th practical: Spline functions, Least-square method

5th practical: Numerical differentiation and integration

6th practical: Euler method and its modifications, Runge-Kutta methods, Finite-difference method



methods. Given the 2/2 scheme of lectures / practical classes, numerical methods are dealt with
in six or seven 100 minutes long lectures and six or seven practical classes of the same length.

Final exams in Mathematics 3 are written ones and do not contain practical tasks solved
with the aid of computers or writing scripts.

2 Nature of practical classes

All numerical methods practical classes of Mathematics 3 are computer-aided ones in attended
form of study; MATLAB software is used. The obvious question, which arises in this respect, is
how to make use of computer classes when students naturally point out that the final exam does
not involve computer performance at all. The wide range of options includes using MATLAB
as a ”well-equipped” calculator, setting tasks of writing a MATLAB script for each particular
method, using MATLAB to show the importance of assuptions and conditions for using a given
method, pitfalls and risks of applying and following algorithms without considerations, etc.

The format of practical classes I am going to discuss follows from the belief that by that once
students themselves design an algorithm regarding a particular numerical method, the efficiency
in practising it increases.2 It seems to be a time-saving format as well, as once students are in
possession of an algorithm, have access to the computer software, they need only to consider the
necessary assumptions and considerations of the particular method and can (to a great extent)
make the tasks on their own or compute tasks found elsewhere. Such a script then works as
a verification of the often lengthy hand computations, which cannot be performed in class for
time reasons.

3 Examples of scripts

Let us consider two examples: the task of finding a Newton interpolation polynomial and the
task of interpolation by natural cubic spline functions. For both cases, let us follow a typical
student’s encounter with the subject matter and let us discuss the problems he or she faces.

3.1 Finding a Newton interpolation polynomial

The electronic text for BMA3 (or rather KMA3 ) is available – [4] is used. The respective quotes
are demonstrations only, as the actual form of formulas is similar in all texts. In [4], chapter
6.1.3, the divided differences are mentioned and the formulas for finding them are given:

For a given function f and nodes xi, i = 0, . . . , n the ratios

f [xi, xi+1] =
f(xi+1)− f(xi)

xi+1 − xi
, i = 0, 1, . . . n− 1

are called divided differences of the first order. Using them we define the divided
diferences of the second order as

f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi, xi+1]

xi+2 − xi
, i = 0, 1, . . . , n− 2;

and in a general way for k ≤ n divided differences of the kth order

f [xi, xi+1, xi+2, . . . xi+k] =
f [xi+1, xi+2, . . . , xi+k]− f [xi, xi+1, . . . , xi+k−1]

xi+k − xi
,

2This does not mean that the question Can this particular task be solved by this particular method? should be
ignored or omitted; verifying conditions of use is equally important.



i = 0, . . . , n− k.

Substituing these values [into a previously stated form of interpolation polynomial]
we get Newton interpolation polynomial

Nn(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + . . .

. . . f [x0, x1, . . . , xn](x− x0)(x− x1) . . . (x− xn−1)

A well commented example with the divided-difference table follows. The actual computation
of the divided diferences, however, relies on the above mentioned formulas and naturally does
not include a down-to-earth explanation of how each respective value was obtained.

Yet it is the down-to-earth explanations that cause the greatest amount of problems as
students surprisingly are not able to handle the general formulas and obtain the values in the
table. With respect to the have-the-result-don’t-need-more attitude it seems not to matter
how many numerical tasks are solved in the class as every extra task is likely to cause the
same problems. The algorithm development is therefore needed, even though students usually
percieve it as wasting precious time. They do not seem to realize that when developing the
algorithm they are forced to think over the problem and that they can only accomplish the task
when they have fully understood what exactly the general notation means.

One of the possible forms of the resulting MATLAB script may be as follows3:

x=input(’Nodes (in the form [a b c etc.]): ’);
gx=input(’Function values in nodes (in the form [a b c etc.]): ’);

for i=1:size(gx,2)
deltag(i,1)=gx(i);

end

for i=1:size(x,2)-1
for j=1:size(x,2)-1

if (i+j)<size(x,2)+1
deltag(j,i+1)=(deltag(j+1,i)-deltag(j,i))/(x(j+i)-x(j));

end
end

end

deltag

A common comment on using algorithm development techniques for students other than
those of information technologies is that students do not need to be familiar with ”programming”.
It has also been often pointed out that syntax rules of respective softwares differ considerably and
that students are not meant to learn what they are not going to apply once they are employed.
Yet the above mentioned script only requires the knowledge of the following: for n = a to b
loop and its difference from do while loop, the if then concept and input and size commands.
The first two concepts being notorious while the last one obvious (even if not used before) and
the command predictable. Syntax (as well as the size command can be found in help once
the user knows what to look for.) Furthermore – naturally – the task assumes that the general
notation has been comprehended and different ways of handling the problem considered. In other
words – writing such a script should be an easy task for a second year student who attended
the respective lecture and has revised before the practical class.

3The script finishes when variable deltag storing the divided-difference table is printed on the screen; con-
structing the polynomial may be another task. Entering correct values is assumed.



3.2 Interpolation by natural cubic spline functions

[4], chapter 6.2, states that:

In intervals < xi, xi+1 >, i = 0, 1, . . . , n− 1 we are going to look for spline functions

Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3

We have that ai = f(xi), i = 0, 1, . . . , n − 1. Therefore [considering also further
assumptions] after some effort we get a system of equations with unknown coefficients
ci, i = 0, . . . , n

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 = 3(
∆fi

hi
− ∆fi−1

hi−1
),

i = 1, . . . , n− 1
c0 = cn = 0,

where hi = xi+1 − xi and ∆fi = f(xi+1)− f(xi), i = 0, . . . , n− 1.

[The first, second and last equation of the general system is then given.]

Coefficients bi, di can be found with the help of ci from formulas [which follow from
others stated in the text]

bi =
f(xi+1)− f(xi)

hi
− ci+1 + 2ci

3
hi, i = 0, . . . , n− 1

di =
ci+1 − ci

3hi
, i = 0, . . . , n− 1

A well commented example is again given. A table summarises i, xi, f(xi), hi, ∆fi values,
the system of three equations for ci is included, and formulas for bi, di are mentioned. All
coefficients ai, bi, ci, di are summarised in a table and the set of spline functions is then given.
An example value is computed in the end.

The task of interpolation by spline functions is that of lengthy computations. If learning is
supposed to be effective, they must be performed, though. Yet regarding the time allowed for
the topic (even though 50 minutes for this particular method in BMA3 at FEEC BUT may not
be typical), and number of students in the class, solving one or two tasks in the class is all but
effective, even if students are required to do the computations themselves and not to ”follow the
board”.

The issue of efficiency

More practice is needed. Students can refer to books – yet not knowing how the method works
(since there was no time to catch this during the one or two examples) or its pitfalls, they are
not likely to make much use of this option.

The teacher may prepare the script, let students download it and have it for practice. Once
they come across an example, the script may be a quick verification tool of hand computations.
This option seems to be clearly favoured by students (cf. [5]).

However, the script may also be prepared by students themselves in the actual class. The
advantages are obvious – by actually writing the script themselves, students learn much more
than by downloading the work of somebody else. Furthermore, they can write the script in such



a way with such notation as is convenient for them. Obviously, a great number of students are
not happy with this approach as it requires more work on their part than clicking ”Save as. . . ”.

Producing the whole scripts is not necessary – parts of scripts may be asked for, modifications
required, etc. A sample task in this respect may be: The following script works only for five
nodes. Change it in such a way that the number of nodes is not relevant. (The script produces
natural cubic spline functions.)

clear all
x=sym(’x’);
% entering the task
funkce=input(’Enter function f(x): ’);
uzly=input(’Enter nodes in the form [a b c etc.]: ’);
n=size(uzly,2);
% computing function values in nodes
for i=1:size(uzly,2)

hodnoty(i)=subs(funkce,uzly(i));
end
% computing length of the intervals
for i=1:size(uzly,2)-1

h(i)=uzly(i+1)-uzly(i);
end
% computing deltaf(i)
for i=1:size(hodnoty,2)-1

deltaf(i)=hodnoty(i+1)-hodnoty(i);
end
% summarising results for clarity reasons (same form as in teaching text)
uzly
hodnoty
h
deltaf
% computing coefficients c
% MAKE THIS PART WORK REGARDLESS OF THE NUMBER OF NODES
matice=[2*(h(1)+h(2)) h(2) 0; h(2) 2*(h(2)+h(3)) h(3); 0 h(3) 2*(h(3)+h(4))]
prava_strana=[3*(deltaf(2)/h(2)-deltaf(1)/h(1));
3*(deltaf(3)/h(3)-deltaf(2)/h(2));
3*(deltaf(4)/h(4)-deltaf(3)/h(3))]
pom=pinv(matice)*prava_strana;
% c(0)=0 a c(n)=0 added to the above results
c(1)=0;
for i=1:size(pom)

c(i+1)=pom(i);
end
c(n)=0;
% computing remaining coefficients
for i=1:size(hodnoty,2)-1

b(i)=(hodnoty(i+1)-hodnoty(i))/h(i)-(c(i+1)+2*c(i))/3*h(i);
end
for i=1:size(hodnoty,2)-1

d(i)=(c(i+1)-c(i))/(3*h(i));
end
% results printed in a convenient form (not included)



Remark: This particular task has been chosen as an example because it helps students to
grasp the general notation of the system of equations for computing ci values, which seems to
be the most problematic part in the process of actual computing the tasks as students are often
at a loss with the number of different indices and their ranges. Also, to accomplish the task
students have to comprehend the method itself as well as the rest of the script. For time saving
reasons they are not required to produce the whole of it, though. It is also to be noticed that
from the IT point of view writing or adjusting this particular script again does not require more
skills than any student of technology should possess.

4 Conclusions

It is the issue of efficiency of numerical methods practical classes that has been discussed. It
is obvious that once curricula are tight, the number of lessons decreasing and the amount of
subject matter increasing, teacher — student cooperation in the class is the key to efficiency.
This, however, assumes that students understand the rational, are willing to co-operate, and
work on their own outside the class, which are conditions not always satisfied. The general
attitude of (a representative sample of FEEC BUT) students towards computer-aided classes
has been discussed in [5]. It shows the lack of interest in any non-immediatelly-applicable
and non-immediatelly-result-giving techniques. Algorithm development as a tool of (deeper)
understanding of the concept is clearly not favoured; students prefer a set of particular tasks to
a general solution. Yet I believe that a suitable form of practical classes can help to overcome
this attitude.

References

[1] B. Bačová. MATLAB and Mathematica in teaching numerical mathematics. In: The 1st
international conference on applied mathematics and informatics at universities 2001, 294–
299 Gabč́ıkovo, 2001.

[2] J. Baštinec. Matematika pro sériové bakaláře na FEKT VUT. In: 3. konference o matemat-
ice a fyzice na vysokých školách technických s mezinárodńı účast́ı. Sborńık př́ıspěvk̊u, 31–36
Brno, 2005.

[3] J. Baštinec. O schopnosti studovat u student̊u FEI VUT. In: XVII International Colloqium
on the Acquisition Process Management. Proceedings contributions, 10–13 VVŠ PV, FEM,
Vyškov, 1999.

[4] B. Fajmon, I. Růžicková. Matematika 3. VUT, Brno, 2005. (elektronický text na
http:\\www.umat.feec.vutbr.cz/~fajmon/bma3/matematika3.pdf)

[5] M. Novák. On Problems of Computer Aided Teaching of Mathematics at Technical Uni-
versities. In: XXIII International Colloqium on the Acquisition Process Management. Pro-
ceedings of electronic versions of contributions. University of Defence, Faculty of Economics
and Management, Brno, 2005.


