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In this contribution we study a system of three difference equations

∆u1(k) = f1(k, u1(k), u2(k), u3(k)),
∆u2(k) = f2(k, u1(k), u2(k), u3(k)),
∆u3(k) = f3(k, u1(k), u2(k), u3(k)),

(1)

where k ∈ N(a) := {a, a + 1, . . . }, a ∈ N is fixed, ∆ui(k) = ui(k + 1) − ui(k), i = 1, 2, and
f1, f2, f3 : N(a) × R3 → R are functions that are continuous with respect to their last three
arguments, i.e. fi(k, u1, u2, u3), i = 1, 2, 3, is continuous with respect to u1, u2 and u3 for every
fixed k ∈ N(a).

The solution of system (1) is defined as an infinite sequence of number vectors

{(u1(k), u2(k), u3(k)}∞k=a

such that for any k ∈ N(a) equalities (1) hold.

The existence and uniqueness of the solution of initial problem (1), (2) with

(u1(a), u2(a), u3(a)) = (ua
1, u

a
2, u

a
3) ∈ R3 (2)

on N(a) is obvious.

Our aim is to find sufficient conditions with respect to the right-hand side of system (1) which
guarantee the existence of at least one solution

u∗(k) = (u∗1(k), u∗2(k), u∗3(k)), k ∈ N(a),

satisfying for every k ∈ N(a)

(k, u∗1(k), u∗2(k), u∗3(k)) ∈ Ω(k)

with
Ω(k) := {(k, u1, u2, u3) : bi(k) < ui < ci(k), i = 1, 2, 3},

where bi, ci : N(a) → R, i = 1, 2, 3 are auxiliary functions such that bi(k) < ci(k) for every
k ∈ N(a).



Obviously, each set Ω(k) is a rectangular parallelepiped and its boundary consists of six parts:

∂Ω(k) = Ω1
B(k) ∪ Ω1

C(k) ∪ Ω2
B(k) ∪ Ω2

C(k) ∪ Ω3
B(k) ∪ Ω3

C(k)

with

Ωj
B(k) := {(k, u1, u2, u3) : k ∈ N(a), uj = bj(k), bi(k) ≤ ui ≤ ci(k), i = 1, 2, 3, i 6= j}

and

Ωj
C(k) := {(k, u1, u2, u3) : k ∈ N(a), uj = cj(k), bi(k) ≤ ui ≤ ci(k), i = 1, 2, 3, i 6= j}.

Theorem 1 Let bi(k), ci(k), bi(k) < ci(k), i = 1, 2, 3, be real functions defined on N(a) and let
fi : N(a)× R3 → R, i = 1, 2, 3, be functions that are continuous with respect to their last three
arguments. Suppose that for a fixed j ∈ {1, 2, 3} and for every k ∈ N(a) all the points of the
sets Ωj

B(k), Ωj
C(k) are so called points of strict egress, i.e.,

(k, u1, u2, u3) ∈ Ωj
B(k) ⇒ fj(k, u1, u2, u3) < bj(k + 1)− bj(k)

(k, u1, u2, u3) ∈ Ωj
C(k) ⇒ fj(k, u1, u2, u3) > cj(k + 1)− cj(k).

For the remaining indices i ∈ {1, 2, 3} \ {j} suppose that for every (k, u1, u2, u3) ∈ Ω(k), k ∈
N(a),

bi(k + 1) < ui + fi(k, u1, u2, u3) < ci(k + 1).

Then there exists a solution u = (u∗1(k), u∗2(k), u∗3(k)) of system (1) satisfying the inequalities

bi(k) < u∗i (k) < ci(k), i = 1, 2, 3,

for every k ∈ N(a).

The proof of Theorem 1 is performed by a contradiction and the so called retract type technique
is used. The assumption that there exists no solution with the desired properties leads to the
conclusion that there exists a continuous mapping (a retraction) of a closed interval onto its
both endpoints which is, by known facts, impossible.
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