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Abstract

This contribution is close to the investigation contained in [9, 10]. Linear integral oper-
ators belong to important tools in both classical pure and applied mathematics.
These topics are usually included into mathematical programmes on technical universities

for the sake of their applicability in various engineering sciences.
The crucial idea is to investigate groups of linear integral operators on the same set of

operators with different binary operations which are endowed with a suitable ordering of
operators to obtain ordered groups of integral operators determined by Fredholm integral
equations of the first and the second kind.
Using the standard functor of the transfer from the category of ordered groups and their

isotone homomorphism into the category of hypergroups and their inclusion homomorphism
we construct a hypergroup of integral operators or a hypergroup of classes of equivalence of
hypergroups with suitable subhypergroups possessing interesting properties from the view of
algebraic theory.
In this contribution we will construct a group of operators which can be also termed as

an ordered group of integral operators of free–member–combined type.

1 Basic notions and definitions

Definition 1. Hypergroupoid is a pair (H, ∗), where H 6= ∅ and ∗ : H×H → P∗(H) (the system
of all nonempty subsets of H) is a binary hyperoperation on H. If the associativity axiom
a ∗ (b ∗ c) = (a ∗ b) ∗ c holds for all a, b, c ∈ H then the pair (H, ∗) is called a semihypergroup.
If moreover for any element a ∈ H is satisfied the reproduction axiom a ∗H = H = H ∗ a then
the pair (H, ∗) is called a hypergroup.

Definition 2. A hypergroup (H, ∗) is called a transposition hypergroup or a join space if it
satisfies the transposition axiom: For all a, b, c, d ∈ H the relation b\a ≈ c/d implies a∗d ≈ b∗c,
(here X ≈ Y for X, Y ⊆ H means X ∩ Y 6= ∅), where sets b\a = {x ∈ H; a ∈ b ∗ x}, c/d =
{x ∈ H; c ∈ x ∗ d} are called left and right extensions or fraction, respectively.

The following lemma can be found in [5].

Lemma 1. Let (H, ·,≤) be an ordered group. Define a hyperoperation ∗ : H ×H → P∗(H) by

a ∗ b = [a · b)≤ = {x ∈ H; a · b ≤ x}



for all pairs of elements a, b ∈ H. Then (H, ∗) is a hypergroup which is commutative if and only
if the group (H, ·) is commutative.

An integral equation of the form

ϕ(x)− λ

b∫
a

K(x, s)ϕ(s) ds = f(x), (1)

where K(x, s) (kernel), [x, s] ∈ 〈a, b〉 × 〈a, b〉 ⊂ R × R, is a real or complex valued function
(mostly real function), f(x), x ∈ 〈a, b〉 ⊂ R, is a function called a free or an absolute member,
λ is a numerical parameter and ϕ is an unknown function, is called Fredholm integral equation.
More precisely, it is called Fredholm integral equation of the second kind, whereas an integral
equation of the form

b∫
a

K(x, s)ϕ(s)ds = f(x)

is called Fredholm integral equation of the first kind.
So we consider the operators

F (λ, K, f) : C〈a, b〉 → C〈a, b〉

(C〈a, b〉 means the set of all continuous functions on 〈a, b〉) of the type

F (λ, K, f)(ϕ(x)) = λ

∫ b

a
K(x, s)ϕ(s) ds + f(x) (2)

with a fixed interval 〈a, b〉 ⊂ R. The mentioned operator occurs in the construction of a series
of functions which approximate the solution of Fredholm equation (1).

2 Construction of join space of operators based
on ordered groups

In the sequel we will denote C(J), C(J × J) the sets of continuous functions on J = 〈a, b〉 ⊆ R,
J ×J = 〈a, b〉×〈a, b〉 ⊆ R×R, respectively, f ∈ C(J), K ∈ C(J ×J). Further we denote C+(J)
the subset of all positive functions of C(J).
For J ⊆ R let us denote

G = {F (λ, K, f) : K ∈ C(J × J), f ∈ C(J), λ 6= 0},

where F (λ, K, f) is given by (2). For any pair of operators F (λ1,K1, f1), F (λ2,K2, f2) in G let
us define

F (λ1,K1, f1)� F (λ2,K2, f2) = F (λ1λ2,K1K2, K̂1f2 + f1). (3)

Here K̂1(x, s) = K1(x, x).

Proposition 1. The groupoid (G,�) is a noncommutative group.

Proof. Suppose F (λi,Ki, fi) ∈ G, i = 1, 2, 3. Then(
F (λ1,K1, f1)� F (λ2,K2, f2)

)
� F (λ3,K3, f3) =

= F (λ1λ2,K1K2, K̂1f2 + f1)� F (λ3,K3, f3) = F (λ1λ2λ3,K1K2K3, K̂1K̂2f3 + K̂1f2 + f1)

= F
(
λ1λ2λ3,K1K2K3, K̂1(K̂2f3 + f2) + f1

)
= F (λ1,K1, f1)� (F (λ2λ3,K2K3, K̂2f3 + f2)

= F (λ1,K1, f1)�
(
F (λ2,K2, f2)� F (λ3,K3, f3)

)
,



thus the binary operation “� ” is associative.
Further, for any operator F (λ, K, f) ∈ G and the operator F (1, 1, 0) we have

F (λ, K, f)� F (1, 1, 0) = F (λ, K, f) = F (1, 1, 0)� F (λ, K, f),

thus the operator F (1, 1, 0) is the unit of the semigroup (G,�).
If F (λ, K, f) ∈ G is an arbitrary operator, then its inverse element within the monoid (G,�) is
the operator

F−1(λ, K, f) = F

(
1
λ

,
1
K

,− f

K̂

)
= F

(
λ−1,

1
K

,− f

K̂

)
.

Indeed,

F (λ, K, f)� F

(
λ−1,

1
K

,− f

K̂

)
= F (1, 1, 0) = F

(
λ−1,

1
K

,− f

K̂

)
� F (λ, K, f).

For J ⊆ R let us denote

G1 = {F (λ, K, f) : K ∈ C+(J × J),K 6= 0, f ∈ C(J), λ 6= 0}.

Evidently, (G1,�) is subgroup of (G,�). For any pair of operators F (λ1,K1, f1), F (λ2,K2, f2)
in G1 we put

F (λ1,K1, f1) ≤ F (λ2,K2, f2) if and only if λ1 = λ2,K1(x, s) = K2(x, s) and f1(x) ≤ f2(x)

for any [x, s] ∈ J × J .

Proposition 2. The structure (G1,�,≤) is a noncommutative ordered group.

Proof. From the definition of the relation “≤” it follows immediately, that this relation is on G1

reflexive, antisymmetrical and transitive, hence the pair (G1,≤) is an ordered set.
It remains to verify the compatibility of the ordering “≤” on G1 with the binary operation

“�”. Suppose F (λ1,K1, f1), F (λ2,K2, f2) ∈ G1 are integral operators satisfying F (λ1,K1, f1) ≤
F (λ2,K2, f2) and F (λ, K, f) ∈ G1 is an arbitrary operator. Then

f1(x) ≤ f2(x), 0 6= λ1 = λ2, K1(x, s) = K2(x, s)

for any [x, s] ∈ J × J , which implies

λλ1 = λλ2, KK1 = KK2,

K̂f1 + f ≤ K̂f2 + f

for each [x, s] ∈ J × J , hence

F (λ, K, f)� F (λ1,K1, f1) = F (λλ1,KK1, K̂f1 + f) ≤
≤ F (λλ2,KK2, K̂f2 + f) = F (λ, K, f)� F (λ2,K2, f2).

Similarly,

λ1λ = λ2λ, K1K = K2K,

K̂1f + f1 ≤ K̂2f + f2

for each [x, s] ∈ J × J , hence

F (λ1,K1, f1)� F (λ, K, f) = F (λ1λ, K1K, K̂1f + f1) ≤
≤ F (λ2λ, K2K, K̂2f + f2) = F (λ2,K2, f2)� F (λ, K, f).

Consequently, (G1,�,≤) is a noncommutative ordered group.



Now we apply the simple construction of a hypergroup from Lemma 1 to the considered
ordered group of integral operators.
Thus for an arbitrary pair of operators F (λ1,K1, f1), F (λ2,K2, f2) ∈ G1 we define a hyper-

operation ∗ : G1 ×G1 → P∗(G1) as follows:

F (λ1,K1, f1) ∗ F (λ2,K2, f2) = (4)

= {F (λ, K, f) ∈ G1 : F (λ1,K1, f1)� F (λ2,K2, f2) ≤ F (λ, K, f)}
= {F (λ, K, f) ∈ G1 : F (λ1λ2,K1K2, K̂1f2 + f1) ≤ F (λ, K, f)}
= {F (λ1λ2,K1K2, f) : K̂1f2 + f1 ≤ f}.

Then we obtain from Proposition 1 with respect to Lemma 1:

Proposition 3. Let J = 〈a, b〉 ⊆ R and ∗ : G1 × G1 → P∗(G1) be the above defined binary
hyperoperation. Then the hypergroupoid (G1, ∗) is a noncommutative hypergroup.

Now we are going to verify that the above constructed noncommutative hypergroup (G1, ∗)
is in fact a join space. The following auxiliary assertion will be very useful in the sequal.

Lemma 2. Let J ⊆ R be a compact interval and F (λ1,K1, f1), F (λ2,K2, f2) ∈ G1 be arbitrary
operators, i.e. elements of the hypergroup (G1, ∗). Then

1◦ F (λ1,K1, f1)/F (λ2,K2, f2) =
{

F
(λ1

λ2
,
K1

K2
, f

)
: f ≤ f1 −

K̂1

K̂2

f2

}
,

2◦ F (λ2,K2, f2)\F (λ1,K1, f1) =
{

F
(λ1

λ2
,
K1

K2
, f

)
: f ≤ f1 − f2

K̂2

}
.

Proof. Taking into account the fact that the functionK2 is positive and λ2 6= 0 on the whole J×J
then with respect to the definitions of corresponding hyperoperations we obtain for arbitrary
pairs of operators F (λ1,K1, f1), F (λ2,K2, f2) ∈ G1 that

F (λ1,K1, f1)/F (λ2,K2, f2) = {F (λ, K, f) : F (λ1,K1, f1) ∈ F (λ, K, f) ∗ F (λ2,K2, f2)}
= {F (λ, K, f) : F (λ1,K1, f1) ≥ F (λ, K, f)� F (λ2,K2, f2)}
= {F (λ, K, f) : F (λ1,K1, f1) ≥ F (λλ2,KK2, K̂f2 + f)}

=
{

F

(
λ1

λ2
,
K1

K2
, f

)
: f ≤ f1 −

K̂1

K̂2

f2

}
,

which proves formula 1◦.
Further

F (λ2,K2, f2)\F (λ1,K1, f1) = {F (λ, K, f) : F (λ1,K1, f1) ∈ F (λ2,K2, f2) ∗ F (λ, K, f)} =
= {F (λ, K, f) : F (λ1,K1, f1) ≥ F (λ2,K2, f2)� F (λ, K, f)}
= {F (λ, K, f) : F (λ1,K1, f1) ≥ F (λ2λ, K2K, K̂2f + f2)}

=
{

F
(λ1

λ2
,
K1

K2
, f

)
: f ≤ f1 − f2

K̂2

}
and formula 2◦ is proved, as well.

Theorem 1. (G1, ∗) is a noncommutative transposition hypergroup, i.e. a noncommutative
join space.



Proof. By Proposition 3 the hypergroupoid (G1, ∗) is a noncommutative hypergroup. It remains
to prove that this hypergroup satisfies the transposition law.
Suppose F (λi,Ki, fi) ∈ G1, i = 1, 2, 3, 4 is a quadruple of integral operators such that

F (λ2,K2, f2)\F (λ1,K1, f1) ≈ F (λ3,K3, f3)/F (λ4,K4, f4), i .e.{
F

(λ1

λ2
,K,

f1

f2

)
: f ≤ f1 − f2

K̂2

}
∩

{
F

(
λ3

λ4
,K,

f3

f4

)
: f ≤ f3 −

K̂3

K̂4

f4

}
6= ∅.

Thus there exist an operator F (λ, K, f) ∈ G1 such that

λ =
λ1

λ2
=

λ3

λ4
and K =

K1

K2
=

K3

K4
.

We have
λ1λ4 = λ2λ3, K1K4 = K2K3

and f is a function satisfying

f ≤ f1 − f2

K̂2

, f ≤ f3 −
K̂3

K̂4

f4 .

Let us define
λµ = λ1λ4 = λ2λ3, Kµ = K1K4 = K2K3

and
fµ ≤ min{K̂1f4 + f1, K̂2f3 + f2}.

Then F (λµ,Kµ, fµ) ∈ G1 and with respect to Lemma 2 we have

F (λµ,Kµ, fµ) ∈ {F (λ1λ4,K1K4, f) : f ≥ fµ} = F (λ1,K1, f1) ∗ F (λ4,K4, f4),

F (λµ,Kµ, fµ) ∈ {F (λ2λ3,K2K3, f) : f ≥ fµ} = F (λ2,K2, f2) ∗ F (λ3,K3, f3),

consequently
F (λ1,K1, f1) ∗ F (λ4,K4, f4) ≈ F (λ2,K2, f2) ∗ F (λ3,K3, f3),

hence the hypergroup (G1, ∗) is a noncommutative join space.

Thus (G1,�) is a noncommutative group of Fredholm operators of the second kind which
has a subgroups of the form

G0 = {F (1,K, 0) : K ∈ C+(J × J)},

GN = {F (1,K, f) : K ∈ C+(J × J)}.
The subgroup (G0,�) of the group (G1,�) is not normal, because

F (λ, K, f)� F (1,K1, 0)� F−1(λ, K, f) =

= F (λ, KK1, f)� F
( 1

λ
,

1
K

,− f

K̂

)
= F

(
1,K1,−K̂1f + f

)
,

and K̂1 need not be equal to the constant function with value 1.
The subgroup (GN ,�) of the group (G1,�) is normal, because

F (λ, K, f)� F (1,K1, f1)� F−1(λ, K, f) =

= F (λ, KK1, K̂f1 + f)� F
( 1

λ
,

1
K

,− f

K̂

)
= F

(
1,K1,−K̂1f + K̂f1 + f

)
.

Using these subgroups it is possible to construct the decompositions of G and G1 and to
introduce hyperoperations on these decompositions. This leads to further interesting examples
of join spaces—see [9].
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