Numerical range and numerical radius
(An introduction)

K. F. Zitny, J. Kozdnek*

In early studies of Hilbert spaces (by Hilbert, Hellinger, Toeplitz, and others)
the object of chief interest were quadratic forms. Nowadays, quadratic ques-
tions about a linear continuous operator are questions about its numerical
range - [1], [3], [5]. Students may find in this paper a motivation to go on to
a deeper understanding of the properties of linear operators and matrices as
well as some numerical methods how to determine their numerical ranges. It
is rather surprising that the proof of the so called Elliptical Range Theorem
for the matrices of order 2 is tedious - [4].

We deal with the Banach algebra B(H) of linear continuous operator on a
complex Hilbert space H. The numerical range of an operator 7' € B(H) is
the subset of the complex field C, given by

V(T) ={(Tzl|z) | = € H, ||z]| = 1}.

The following properties of V(T') are immediate

V(al + 8T) = a+ gV(T) for a, g €C,

V(T") = {}| A e V(T)},

V(U*TU) = V(T) for any unitary U € B(H).
The next fundamental result is known as the Toeplitz-Hausdorff theorem.
(We shall not interrupt our presentation by defining every item of notation
we use in this text.)

Theorem 1 The numerical range V(T') of T' € B(H) is convex.
Proof. Given Ay, A2 € V(T'), A1 # A2, we will prove that

(1 —t)A; +tXy € V(T') whenever t € [0, 1].
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If S=al+ 3T, where o, 3 € C are such that 0 = o+ 3\, and 1 = o + 3,
it is sufficient to show that ¢t € V(S) for all ¢ € [0, 1].
Let us fix unit vectors z,y € H such that

0= (Szl|z), 1= (Syly)
and define g : R — C by
g(t) = (Sz|y) exp(—it) + (Sy|z) exp(it), t € R.

Since cosm = —1, it is obvious that g(t + n) = —g(t) for every ¢ € R.
Moreover, there exists ty € [0, 7] such that Im g(¢y) = 0. Since Im g(0) =
—Img(n), and g is a continuous function, there is t, € [0,n] such that
Im g(to) = 0.

Now observe that the vectors @ and y = exp(ityg)y are linearly independent.
Otherwise, z = « g for some @ € C, |a| = 1 and 0 = (Sz|z) = |a|*(S7|7) =
(Syly) = 1. To finish the proof, define continuous functions z and f by

(1—38)x+sy
11 = s)z + syl

z(s) = s € [0,1],

and

fs) = (S2(s)[z(s)), s€[0,1].

A straightforward calculation shows that f is a real-valued function with
f(0)=0and f(1)=1. Thust € [0,1] C £([0,1]) C [0,1] C V(S). =

This theorem has many proofs, a recent one is due to C.K. Li , C-Numerical
Ranges and C-Numerical Radii”, Linear and Multilinear Algebra (1994),
37, 51-82. A short proof covering unbounded operators was given in K.E.
Gustafson ,, The Toeplitz-Hausdorff Theorem of linear Operators”, Proc. Amer.
Math. Soc. (1970), 25, 203-204.

Lemma 1 An operator T' € B(H) is Hermitian iff V(T') C R.

Proof. If T = T*, we have (T'z|z) € R for every z € H. Hence V(T) C R.
Conversely, suppose V(T') C R. Then ((T — T*)z|z) = (Tz|z) — (T*z|z) =
(Tz|z) — (Tz|z) =0 for z € H.




We give a brief account of some properties of the numerical radius.

The numerical radius of 7' € B(H) is given by

o(T) =sup{|\| | A € V(T))}.

Obviously, v(T*) = v(T') for every T' € B(H), and for any vector x € H, we

have
(Tz|z)| < o(T) - |||,

Lemma 2 For T € B(H),

1
5|\T|| < o(T) , and v(T?) < o(T)%.

Proof. For S € B(H) and unit vectors z,y € H we verify (with the help of
the parallelogram identity) the following inequality:

2(Szly) +2(Sylz)| = [(S(z+y)lz+y) - (S(@—y)lz—y)|
v(8)(|lz + ylI* + [lz — yII*)

= 20(S) (I[P + llyl*)

= 4du(s) .

IA

Taking Sz # 0 and y = ||Sz||~' Sz, we conclude that
11S=[[* + (S*zlw)| < 20(S)||Sx]| -

Let s € R be such that exp(i2s)(T?z|z) = |(T?z|z)| and let S = exp(is)T .
Then
172 < || T|* + |(T%2|w)| < 20(T)||Tl,

and hence ||T|| < 2v(T) .
Noting that

o
IA

20(T)||T|| — ||Ta|]* — |(T*z|x)]
—((T) = [|T=|)* + o(T)* — |(T*z|z)|
< (1)’ = |(T?l2)]

we conclude that |(T2z|z)| < v(T)? , which implies v(T?) < »(T)*. ®H



Observe that the numerical radius v(7") is a norm on B(H) equivalent to the
operator norm in view of the inequality ||7| < v(T) < ||T|| valid for all
T ¢ B(H) .

Corollary 1

If T € B(H) is normal, then ||T|| = »(T) .

Proof. It is sufficient to show that ||T'|| < (7). By the previous lemma
v(T?) < v(T)? and one verifies easily by induction that v(T2") < v(T)* k >
1. Since T is normal, we have ||T|]>" = ||T%|| < 20(T?") < 20(T)2" and so
[T §k1im 22Fy(T) =o(T). M

Theorem 2
For each T' € B(H) we have

o(T) = max{||Re(¥T)|| | 9 € C, |9] = 1}.

Proof. If z € H is a unit vector we have |(Tz|z)| > |(ReTz|z)| and so
v(T) = v(ReT) = ||ReT|| (because ReT is Hermitian). For 9 € C, |d| =1
replacing 1" by V1" we get

[|Re(dT)|| < o(T).
Suppose that
2 = sup{|| Re(¥T)|| | ¥ € C, |¥| = 1} < o(T),

then pick a unit vector x € H such that » < |(T'z|x)|, and for v = |(Tz|z)|
put & = v 1 (ReTz|z), 8 = v {(ImTz|r) and ¥ = o — i3. Then |9? = 1,
and Re(9T) = Re((a—i8)(ReT+iImT)) = aReT+FImT. Consequently,
|| Re(9T)|| = (Re(dT)x|z) = oy + 3%y = v = |(Tz|z)|, a contradiction.
As the function ¥ - || Re(9T)|| = ||9T + 9T*|| is continuous, we conclude
that

v(T) = max{||Re(dT)|| | ¢ € C, |9 =1}. &

I

Remark. ReT = L(T+7%), (ReT)* = (ReT); ImT = L(T=T"), (Im T)*
—(ImT).

Let us new look at two extreme cases of the inequalities for v(7").
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Lemma 3
Let T € B(H).

a) If v(T) = ||T||, then there exists A € O'ap(T) such that |A| = ||7'|| and
r(T) = [|T1l;

b) If X € V(T'), || = ||T||, then X € a,,(T),

c) If R(T) L R(T™), then v(T) = 3||T||,

where

op(T) = {N € C|N(M —T) # {0}}, denotes the point spectrum of T,

oap(T) = {X € C|there is a sequence (z)nen of unit vectors in A such that,

[|(AM — T),|| — 0}, the approximative spectrum,

r(T) = max{|\|| A € o(T)}, the spectral radius.

Proof.

a) If T # 0, v(T) = ||T|| = 1, then there is a sequence (\,;)nen of complex

numbers such that A, € V(T) and 1 — + < |A,| < 1. Without loss of gener-

ality, we can suppose that A\, — A € V(T'). By construction, A, = (T'z,|z,),

with z, € H, ||z,|| = 1, and from the inequality |(Tz,|zn)| < |[|Tzn|| < 1, we

get hm | Tz,|| = 1. Smce | = T)xn||? = A2 = (Tan|Azn) — (Aan|Tzn) +

||T$n“2 |)\|2 T:E,,‘&Cn) — XNzn|Tz,) + |iTﬂ7nHz — 2 - 2])‘|2 =0.

b) By hypothesis, A = (Tz|z), = € H, ||z|| =1. Then ||T|| = |A| < ||Tz|| <
||T|] and so [(T'z|z)| = ||Tz||||z||. Thus Tz = px for some p € C. However,
A= (Tz|z) = p, and hence Tz = Az.

c)Letz € H, ||z|| = 1. If we write z = y+2z where y € N(T"), z € N(T)*+
R(T*), then (Tz|z) = (Tzly + z) = (Tzly) and |(Tz|z)| < [Tyl

HTH lyll |l2]] < ||T| |5 ”y||2+”2”2 = 2||T|. Since z is arbitrary, we have v(T)
sIT <o(T). m

IA A

Theorem 3
Let T € B(H) and v(T) < 1. Then v(T") < 1 for all n € N,

Using the well-known identity

1
(1= == (1-wfw)™ peC, |y <1

ot
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where w = exp =+, which obviously holds when p is replaced by operators
AT, A e C, |A < 1, we write

n—1

1
npmy—1 _ © P -1
(1—A"T™) ﬁnZa w* NT) 7L
k=0
Since Re((I—w* AT)y |y) = |ly|[*—Re(w* A (Ty |y)) = [ly[*(1-|A]) =0, y €
H, we have Re((I —w* AT) "z | z) for all z € H, writing y = (I —w* A\T) "'z,
Hence
Re((I — A*T™) 'z |z)) > 0 and also Re((/ — \*T™)z|x)) > 0 for all
z € H,and A € C, |\ < 1.
Setting A = sexpit, 0 < s < 1, ¢t € R and then letting s 1, we deduce
that ||z|]* > Re(expintT"z | z) and hence v(T™) < 1. W

In the following H denotes a Hermitian space. That is,a finite-dimensional
Hilbert space over C. Let £(H) denotes the algebra of linear operators on
H. If an operator T' € L(H) is represented by a matrix, we always assume
that the corresponding basis of H is orthonormal. By K(C) we denote the
metric space of nonempty compact subsets of C endowed with the Hausdorff
metric A.

If Ky, K € K(C), then
A(Ky, K3) = max([sup{dist(), K1) | A € Ka}, sup{dist(\, K3) | A € K1}

where dist(A, K;) = inf{|]A — p||p € K;}, 7=1, 2.

The most important facts about V(7") are the following.

Theorem 4

a) If T' e L(H), then V(T) is a compact, convex subset of C, and the
numerical radius is attained.

b) o(T) C V(T) for every T € L(H).

VT +8)cV(T)+V(S), T, S e L(H).

d) AWV(T), V(S)) <||[T'=5]||, T, S € L(H).

Proof.
a) We already know that the numerical range is convex. The function z —
(T'z|xz) from the compact set {x € H |||z|| = 1} into C is continuous.



Since the continuous image of a compact set is compact, the compactness
of V(T') is obvious. Further, the real valued function z — |(T'z|z)| from S
attains its maximal value.
b) For any A € o(T'), we have Az = Tz, z € H, ||z|| =1, and A = (Az|z) =
(Tz|x).
&) V(T + 8) € {(Tslo) |z € H, |lal| = 1} + {(Selo) | € H, ||| = 1} =
V(T) +V(S).
d) Given u € V(T') choose a unit vector z € H such that p = (T'z|x).
Setting 8 = (Sz|x) yields |p — 8| = |(T — S)z|z| < ||T" - S||. Accordingly
dist(, V(8)) = inf{ju—]| 7 € V(S)} < ||T—S]l, and sup{dist(, V(S)) | s €
V(T)} < ||T — S||. By symmetry, we conclude that A(V(T), V(S)) <
[T —S|. ™
Remarks
1)IT, Se L(H), theno(T + S5) c V(T +8) CcV(T)+ V(S).
2) We say that 7' — V(T') is continuous at Ty € L(H) if
lim A(V(Ty), V(Ts)) = 0 for every sequence (Ty)nen in L(H)
g;r(;:ferging to Tg.
Lemma 4
Let T € L(H). If A€ C and d = dist(A\,V(T)) > 0, then A € p(T) and

A =T)7 || <d™".

Proof. For z € H, ||z|| = 1, we have ||[(Al — T)z|| > |(M] — T)z|z)| =
A — (Tz|z)| > d. Suppose N'(AI —T*) # {0}, and choose y € H, ||y|]| =1
such that 7"y = Ay. Then A = (y|M\y) = W|T*y) = (Tyly) € V(T), a
contradiction. Hence A\ — T € GL(H). Giveny € H let z = (A —T) 'y.
Since ||(A — T)z|| > d||z|| we have ||y|| = d||(AM — T)y|| or ™' > ||{A] —
7))l

Corollary 2

If T e L(H) assume that there exists w > 0 such that Re(Tz|z) < —w for
every z € H, ||z|| = 1. Then

10T =T)7 < ———
w4+ Reh
for every A € C with Re A > 0.

Proof. It is sufficient to observe that |A — (Tz|z)| > |Re A — Re(Tz|z)| >
Rel+wforz € H, ||z|]]=1and A€ C,ReA>0. W
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Examples

In the following we use the matrix representation of T' € L£(¢2) with respect
to the standard basis of ¢3.

1) Let T € £(¢%) be represented by the matrix { 8 (1) ] .

If 2 = (, ) € £, ||z]| = |ca]® + |ae|?* = 1, then Tz = (a2,0) and
|(Tz|z)| = |arae] < 2(|a|? + |aal?) = L and thus V(T') € {A € C||)| < 3}
Given A = rexpip, 0 < r < %, v € R,we consider the unit vector z =
(cos a, (expiy) sin o) with o = 3 arcsin 2r. Since (T'z|z) = expipsinacosa =
ssin2aexpie = rexpip, we see that V(T) = {A € C|[}| < 3} and
v(T) = .

0 0
2) Let T' € L(¢3) be represented by

-1 2d
[ 0 1 ] ,d>0.
Then V(T') is an ellipse (with its interior) with the center at the origin, the
foci of which are the eigenvalues of T'.

If T € L£(2) is given by [ o i } , ¥ € R, we note that V() = V(T).

Any umit vector z € £3 may be written in the form
z = expip(cosdd, expipsind), where ¥ € [0,27], ¢, €R.

Since (Tz|z) = (Tyly) if y = (expit)z, 7 € R, we can assume that z =
(cos¥, expiwsind). Then (Tz|z) = — cos 20+d expip sin 2¢ and so |(T'z|z)+
cos 20|? = d?sin® 209. Write (T'z|z) = u + iv, where u, v € R, and observe
that

(u + cos 209)? + v? = d*(1 — cos® 209) .

Since 0 < (cos2¢ + 125)° = ( lsz)g + _1{:‘_2:““2) , it follows easily that
u2 + 'UQ <1
1+d2  d2—

In other words, if A € V(T'), the point (Re A, Im A) lies in the elliptical disc
with center (0, 0), minor axis 2d, and major axis 2v/1 + d? .



If (u,v) € R? and -1_‘;—25 + 3; = 1, we shall show that v +iv € V(T). To see
it, choose t € [0, 27 such that

u=+v1+d?*cost, v=dsint,

and set z(t) = -\}—;(dcost — V14 d?sint, cost + V1+d?) , where » =
2v/1+ d?(v/1 + d? + cost). Then z(t) € £3 is a unit vector, and we have

(Tz(t)|x(t)) = V1+ d?cost + idsint

as desired.

Since V(T') is convex, its points fill up the ellipse, the foci of which have the
coordinates (—1,0) and (1,0).

3) Let T € L{£2) be represented by

—1 dexpiyp N
{0 1 },dER,fpeR.

Then V(T) = V(S), where S € L(£3) is given by the matrix

~1 |d]
0 1 |-
Choose 1 € R such that dexpip = |d|expitp . If x = (A, \y) € C? is a unit

vector, and y = (A1, \pexpitp) € C%. A straightforward calculation shows
that

(Tz|z) = (Syly) -
4)Let 0 <b<a.lTe L(£)is given (with respect to the standard basis)

by
0 «a
)

then V(T') is an ellipse (possibly degenerate) with the interior, and it is
centered at the origin. Its minor axis is along the imaginary axis and has
length a — b; its major axis is along the imaginary axis and has length a + b
. The foci are at ++v/ab.

Since (Tz|z) = (T(expip)z|(expip)z) for any ¢ € R, z € £3, to determine
V(T) it suffices to consider (T'z|z) for unit vectors x whose first component
is real and nonnegative.



Let us consider the vectors z(t) = (¢, (1 — )2 expid), 0 <¢ <1, 0< 9 <
27. A calculation shows that (T (t)|z(t)) = t(1 — t2)2[(a + b) cos ¥ + i sin o).
As 9 varies 0 to 27, and t = %, the point %[(a + b) cos ¥ + i sin 1] traces out,
a possible degenerate ellipse centered at origin. Its foci are located on the
major axis at distance ({£2)% — (%b)z)% = +/ab from the center.

5) Let T' € L£(£3) be represented by an upper triangular matrix

|iA1 e

0 )\2},)\1,)\2,056((:.

a) If A = A\ = Ay, then T is represented by

0 expip 10 B
|O&||:0 0 }+/\[0 I:I'JQO_ATQQJ

and V(T) = |al{y € C||y| < 1} + {A}. In particular, V(T) is a circular disc
with center A and radius ||, if a # 0; otherwise V(T) = {\}.
b) If Ay # X2 and a = 0, we consider the matrix

A 0
0 A |~
If 2 = (c1,02) € £5 is a unit vector, then (T'z|z) = Ao + Aofas|? =

tA1 + (1 — ) A2, t €[0,1]. So V(T) is the line segment joining \; and .
c) If Ay # Xy and « # 0, then T is given by

Az — N [—1 AZ%AI}+A1+)\2[1 0}

2 0 1 2 01
_ ple
If S € £(£3) is represented by @ { 01 "21*1 ], then (cf. Examples 2

and 3) V(S) is an ellipse (with its interior) centered at the origin. The length
of its minor (respectively major) axis is || (respectively \/|A; — Aa|2 + |a[?).
Observe that |a| = /Tr(T*T) — [\ |2 — | 2|2

Therefore

V(T) = (’\1 ;r Ag) +exp i) - V(5), where 1 = Arg(Ags — A\p),
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is an ellipse centered at i’;—’\z with foci at Ay, Ag; the major axis has an
inclination of ¢ with the real axis.

If ©;,25 € ¢35 are unit eigenvectors of T, Txy = Mxy, Txy = Aoxp, the
eccentricity of the ellipse is sin?, where ¢ is reduced angle between the
eigenvectors, that is, 1 = arccos |(z1|z2)|-

Let z; = (1,0), zo = m(a,)\g — A1). Clearly, x1, 2z are unit

eigenvectors of T' corresponding A; and Mg, respectively, and |(z1|z3)| =

—_—L —cos?, 0< I < 2. Hencesind = /1 — cos2 ) = —piiiztel
a2+ A1 —Az)? V e+ =2a?

Coda

If T € £(H), dimH = 2, then the shape of V(T') can be easily extracted
from an examination of the previous example.

Without loss of generality we can suppose that 7" is represented (with respect
to an orthonormal basis of H) by an upper triangular matrix

)\1 [0
[0 )\2:],)\1,)\2,@6@.

Thus V(T) is an ellipse (with interior) whose foci are the eigenvalues of T'.
Furthermore, V(T') is a segment (possibly degenerate) iff T is normal. If T" is
normal, then o = 0 and (Tz|z) = tA; + (1 — ¢) Az for any unit vector x € H.
Reciprocally, if V(T') is a segment or a point, then o = 0. Therefore, if T'
satisfies bd(V(T)) N (T) # 0, then T is normal. In fact, since \; € bd(V(T)),
respectively Ay € bd(V(T')), the ellipse must be degenerate.

Computation of the V(T')

Here, we suppose that T' is a linear operator represented by the matrix
T € C™". The location of the V(T') in the complex plane is possible -[3]
via. Gersgorin-type inclusion, where V(T') lies in the convex hull of some
Gersgorin’s circular discs. The other numerical technique is to generate an
enough large number of random unit vectors and to draw the points (Tz|z)
in the complex plane. More effective is the following approximation method
- [2, 3]. Because the V(T') is convex and compact, it suffices to determine
the boundary bd(V(T")) of V(T'). The general strategy is to calculate many
well-spaced points on bd(V(T')) and (or) many support lines of V(T') in these
points. The convex hull of these boundary points is then a convex polygonal
approximation to V(7'), while the intersection of the half-spaces determined
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by the support lines of V(T') will be a convex polygonal approximation to
V(T') that contains V(T"). The area of the region between these two convex
polygonal approximations may be thought of as a measure of how well is
approximated V(T'). The usefulness of the operator ReT" = (7" + T™) for
the investigation of the V(T") will be shown in the consecutive lemmas.

Lemma 5 V(ReT) = Re V(T).

Proof. A calculation gives: (Re(T")z|z) = 3((Tz|z)+(T"z|z)) = +((Tx|x)+
(Tz|x)*) = Re(Tz|z) and each point in V(ReT') is of the form Re z for some
z € V(T') and vice versa. B

Lemma 6

7T eC» x e C” (z|r) = 1, then the following three conditions are
equivalent:

a) Re(Tz|z) = max Rea
aeWV(T)

b) (Re(T)x|z) :reﬁ?{i{m T

c) (ReT)z = Apax(Re Tz

where Apax(ReT") denotes the largest eigenvalue of the Hermitian matrix
ReT.

Proof. The equivalence of a) and b) follows from the identity Re(Tz|z) =
s((Tz|z) + (T*=z|z)) = (Re(T)z|r) and from the previous lemma. Labeling
n orthonormal eigenvalues and corresponding eigenvectors of the Hermitian
matrix ReT as x;, Aj, j=1,2,...,n, thenz € C", (z|z) = 1 may be written

n n
— 2 _
T = g ¢;jr;, where E le;|” = 1.
=1 =1

Then (ReTz|z) = 377 |ej|*); and the equivalence of b) and c) follows from
extremal properties of eigenvalues. W
The above lemma says that

max Rea = max r= Ap.(ReT)
aeV(T) reV(ReT)

i.e. that the furthest point ”to the right - in the positive direction of Re
axis” in V(T') is Amax(ReT) = A, and that z = z,,, where z,, is correspond-
ing unit eigenvector. Computing eigenvalue A,..(ReT) and corresponding
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eigenvector =, (z|z) = 1 we obtain the boundary point (T'z|z) of V(T') and
the support line L = {A.x(ReT) +ti|t € R} of the convex set V(T') in this
point. Support line L contains at least one point from bd(V(7T)), and V(T)
is contained in one of the closed half-planes defined by L, i.e. V(T') lies in
the half-plane

H = {z| Rez € Amax}-

To obtain other boundary points and other support lines observe that:
exp(—10)V(exp(16)T) = V(T)
for all @ € R. We will rotate V(T') and for each @ we calculate the eigenvalue
Ao = Amax(Re(exp(:0)T))
and associated eigenvector zy € C", (zg|zg) = 1. Then we define the line
Lo = {exp(—i0)(X\g + 1) |t € R}
and the half-plane
Hy =exp(—if){z| Rez < N} . M
In the following we shall use the above notation.

Theorem 5

For a matrix 7' € C™" and each 6 € [0,2x), the complex number p; =
(T'mg|xg) is a boundary point of V(T'). The line Ly is a support line of V(T'),
with pg € Ly N V(T') and V(T") C Hy.

Proof. From geometrical insight follows that each extreme point of V(T)
occurs as a pg and that for any o & V(T') there is an Ly separating V(7") and
a,ie. ad Hy. W

Thus, we can represent V(T') with the help of the next theorem.

Theorem 6

For the matrix T' € C™"

V(T) = Conv({pe |0 < 8 < 27}) = ﬂ Hy .

0<0<2mr
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In practice, we work with the discrete analog of the above theorem. We
define © as a set of angular mesh points

O = {91,92, ...,Qk}, 0<8) <y <... <O <2m

and we calculate for each 6; € © the point py, and we define the half space

Hy, and support line Ly,. Then the inner and outer approximating sets for
V(T') are

V[n(T, 9) = CO’H“U({p,gl, ...,pgk}) and VOut(T; 8) = Hgl Mn...N Hgk
and for every angular mesh O is
Vi(T,0) C V(T) C Voul(T,0) .

Together with the each point py, we can define the point gy, as the (finite)
intersection point of the lines Ly, and Ly,,,, where i = 1,....,kand i =k + 1
is identified with ¢ = 1. Then

P41

VOut(Ty 9) = Hﬂl n..nN H@;c = CO‘]’L’U({Q@U ey qu}) .

The polygonal approximations of the V(T') are

Conv({pe,,..,pe, }) C V(T') C Conv({qo,,---,q0, }) -

On the Fig. 1 is numerical range V(71) and its polygonal approximations

Via(T1,0) = Conv({po,, ---, po, }), and Vou(T1,0) = Conv({gp,, ..., qs,}) in
the complex plane. The eigenvalues of the matrix

2 0
Ti=| 0 2 2
0 03

are marked by (®).

The difference of their areas (or some other measure of their set difference)
may be taken as a measure of the quality of the above approximation.
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Fig. 1 V(T1) and polygonal approximations Vy,(73,0) and Vo (71, ©)

Corollary 3

For the matrix T" € C™™ and every angular mesh ©, we can approximate the
numerical radius v(T) as

po.| < i
max [pe;| < v(T) < max |20,

We note that numerical range V(T") and numerical radius v(T) of a complex
matrix 7' are arbitrarily closely approximated by calculating a series of the
eigenvalue problems of Hermitian matrices only.
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Fig. 2 V(T3) approximated by support lines Ly, , i = 1,..., 50

On the Fig. 2 is the approximation of V(73) by support lines Ly, , i =
L,...,50 in the complex plane. The eigenvalues of the matrix

01000
00100
,=11 00 10
01001
00100

are marked by (®). The detail of the boundary of V(T3) in the neighbourhood
of the real eigenvalue 3% of T} is on the Fig.3.
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Fig. 3 Detail of the boundary of V(T3) from the Fig. 2

On the Fig. 4 is the approximation of polygonal numerical range V(T3) by
support lines Ly, , © = 1,...,100 in complex plane. The eigenvalues of the
normal matrix

01000
00100
T35=|11 0010
01001
00100

are marked by (®).
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Fig. 4 Approximation of polygonal V(T3) by support lines Ly, , ¢ = 1,...,100

Notation

H the Hilbert space over C

B(H) the Banach algebra of continuous linear operators on H
I the identity operator

N, R, C the field of natural, real, complex numbers

(z]y) the scalar product of vectors z, y € H

[|z|| the Euclidean norm, (z|z) = ||z||?

V(T') the numerical range of an operator T € B(H)

T* the adjoint operator to T

v(T) the numerical radius of T' € B(H)

[|T]| the norm of the operator T

2% = ¢2(C) the two-dimensional Hilbert space over C whose elements are
vectors (v, az) € C?

ReT=1(T+T*), ImT = (T - T%)

o(T) the spectrum of T

18



ap(T") the point spectrum of T

04p(T) the approximative point spectrum of T

R(T) the range of T

N(T) the null space of T’

L(H) the algebra of linear operators on H, dimH < +co

GL(H) the linear group of invertible linear operators on H, dimH < +oo
dim H the dimension of the space H

bd(V(T")) the boundary of V(T')

T € C™™ the complex matrix of order n

Amax (ReT") the maximum eigenvalue of Hermitian operator
ReT, T € L(H)
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