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Abstract: This paper links up to the papers [1], [2] and [3]. The author deals with the
intersections of languages of various types (in the sense of Chomsky) and studies two types
of resultand languages. It is proved that the intersection of two languages of the type 2
can be a language of the type 1 and otherwise the intersection of two languages of the
type 1 is a language of the type 3. The known definitions and theorems are given in the
introductionary chapter without proofs.
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1. Preliminaries

1.1 Definition Let V be a set. Then arbitrary element r = (x, y) ∈ V ∗×V ∗ is called
a rule over the set V . The string y is caled left and the string x right side of the rule r.

1.2 Definition Let V be a set, s ∈ V ∗, t ∈ V ∗ strings, (x, y) ∈ V ∗ × V ∗ a rule. We
say that the string t was infered from the string s by the utilizing of the rule (y, x) and
we write s ⇒ t({y, x}) if there exist strings u ∈ V ∗, v ∈ V ∗ so that s = uyv, uxv = t.

1.3 Definition Let V be a set, R ⊆ V ∗ × V ∗ the set of rules. s ∈ V ∗, t ∈ V ∗ strings.
We put s ⇒ t (R) if there exists (x, y) ∈ R such that s ⇒ t({y, x}) Then we say that the
string t is direct infered from the string s utilizing of the rules of the set R.

1.4 Definition Let V be a set,R ⊆ V ∗×V ∗ the set of rules. s ∈ V ∗, t ∈ V ∗ strings. Let
m be a positive integer and {si}m

s=0 be a finite sequence of strings from the set V ∗ such that
s = s0, si−1 ⇒ si (R) for every i with the property 1 ≤ i ≤ m and sm = t. Then we say that
the sequence {si}m

s=0 is the s− derivative of the string t in the set R of the length m.

1.5 Remark For m = 0 the sequence {si}m
s=0 from 1.4 has exactly one member

s = s0 = t. We say that this one-member sequence {si}0
s=0 is a trivial s-derivative of the

string t.
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1.6 Definition Let V be a set, R ⊆ V ∗ × V ∗ the set of rules. s ∈ V ∗, t ∈ V ∗ strings.
We say that the string t can be infered from the string s and we write s

∗⇒ t (R) if there
exists at least one s derivative of the string t in the set R.

1.7 Definition We suppose that a set U and its finite subset V is given. We call
the elements from the set V by terminal symbols, the elements from the set U − V
by non − terminal symbols. Further let R ⊆ U∗ × U∗ be arbitrary set of rules and a
special set S ⊆ U∗ which elements are called initial strings. The ordered quaternion
G =< U, V, S,R > is called generalized grammar. We put

L(G) = {w ∈ V ∗; there exists s ∈ S such that s
∗⇒ w (R)}

The pair (V, L(G)) is called the language generated by generalized grammar G

1.8 Definition Generalized grammar G =< U, V, S,R > is called the grammar when
the sets U, S and R are finite.

1.9 Theorem [4] Let V be nonvoid finite set, W countable set, let V ∩W = Ø Then
the system of all the grammars of the form < U, V, S,R > where U = V ∪ Z for some
finit Z ⊆ W where further S ⊆ U∗ and R ⊆ U∗ × U∗ is countable.

1.10 Corollary [4] Let V be a nonvoid finite set. Then the set of all languages of the
form (V, L) which can be generated by grammars is countable.

1.11 Theorem [4] Let V be a nonvoid finite set. Then the set of all languages of the
form (V, L) is uncountable.

1.12 Theorem [4] Let V be a nonvoid finite set. Then the set of all languages of the
form (V, L) which can be not generated by any grammar is uncountable.

2. The Chomsky hierarchy of grammars and languages.

2.1 Definition Let G =< U, V, S,R > be a grammar. It is called the the type −
0 grammar if the following conditions are contend:

(A) There exists s ∈ U − V such that S = {s}.
(B) For every (y, x) ∈ R y ∈ U∗(U − V )U∗ holds true.

2.2 Remark It is proved that arbitrary language is generated by grammer exactly
when it is generated by grammar of the type 0.

2.3 Definition Let G =< U, V, S,R > be a type-0 grammar . We say that it is of
the type 1 if the following conditions are satisfied:

(C) The initial symbol is not contained in x for any (y, x) ∈ R.
(D) The inequality | y |≤| x | holds true for every (y, x) ∈ R where y is different

from the initial symbol.
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2.4 Remark In the grammar of the type 1 the initial symbol can occur only in the
left sides of the rules. The right sides are non void with only one exception which creates
the rule (s, λ) in which s is the initial symbol.

2.5 Definition Let G =< U, V, S,R > be a grammar of the type 1. We say that it is
of the type 2 if the following condition is satisfied:

(E) It holds y ∈ U − V for every (y, x) ∈ R.

2.6 Remark The left side of arbitrary rule of the grammar of the type 2 is formed by
one nonterminal symbol. Grammars of this type are called noncontext grammars often.

2.7 Definition Let G =< U, V, S, R > be a grammar of the type 2 where s is initial
symbol and S = {s}. We say that that this grammar is of the type 3 if the following
condition is satisfied:

(F) If (y, x) ∈ R and (s, λ) then either x ∈ V nor x = vu where v ∈ V
and u ∈ U − V

2.8 Theorem If i ∈ {1, 2, 3} then every grammar of the type i is simultaneously the
grammar of the type i− 1.

2.9 Definition Let be i ∈ {0, 1, 2, 3}. The language is called the language of the type i
if there exist a grammar of the type i which them generates

2.10 Theorem Let be i ∈ {0, 1, 2, 3}. Then every language of the type i is simulta-
neously the language of the type i− 1.

2.11 Remark It may be that one and the same languge can be generated by different
grammars. These grammars can be of different types.

3. The constructions of intersection grammars

3.1 Example The intersection of two languages of the type 2 is not a language of the
type 2 in full generality.

Proof. Let (V1, L1) be the language generated by the grammar G1 =< U1, V1, S1, R1 >
where U1 = {S1, P, T, a, b} where S1 is the initial symbol, and V1 = {a, b} the rules are:

R1 : S1 → PT,
P → aPb,
T → TT,
P → ab,
T → a.

Analogously let (V2, L2) be the language generated by the grammar G2 =< U2, V2, S2, R2 >
where U2 = {S2, M, N, a, b} where S2 is the initial symbol, and V2 = {a, b} the rules are:

R2 : S2 → NM,
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M → bMa,
N → NN,
M → ba,
N → a

The both grammars are of the type 2.The language V1, L1 generated by the grammar G1

contains the sentences of th form anbnar, where n, r = 1, 2, . . . . and the language gener-
ated by the grammar G2 contains the sentences of the form arbnan where n, r = 1, 2, . . . .
We create the language (V1, L1(G1)) ∩ (V2, L2(G2)).
At first we create the new grammars Ḡ1, Ḡ2 as the modification of G1 and G2. We
rewrite the alphabet of G1 as follows: we put a = α1, b = α2, P = α3, T = α4, S1 = α5

such that V̄1 = {α1, α2, α3, α4, α5} is full vocabulary of Ḡ1. Analogous to G1 we rewrite
the alphabet of G2. We receive a = β1, b = β2, M = β3, N = β4, S2 = β5 such that V̄2 =
{β1, β2, β3, β4, β5 } is full vocabulary of Ḡ2. We enter further set of symbols Γ = {γi,j}
for i, j = {1, 2, 3, 4, 5} and we put γij = {αi, βj}. Now we define the intersection grammar
G:

G = (V̄1 ∪ Γ ∪ {a, b} ∪ γ55, R) where γ55 defines the initial symbol and system of rules R
is devided into four families.

R :
I 1) α5 → α3α4 II 1) αk1γk25 → γk14γk13

2) α3 → α1α3α2 2) αk1αk2γk33 → γk12γk13γk31

3) α4 → α4α4 3) αk1γk24 → γk14γk24

4) α3 → α1α2 4) αk1γk23 → γk12γk21

5) α4 → α1 5) γk14 → γk11

6) γ55 → α3γ45 where k1, k2, k3 = 1, 2
7) γ35 → α1α3γ25 III γijαk → αiγkj i, k = 1, 2
8) γ45 → α4γ45 αiγkj → γijαk j = 1, 2, 3, 4, 5
9) γ35 → α1γ25 IV γ11 → a

10) γ45 → γ15 γ22 → b

Such constructed grammar is the grammar of the language (V1, L1(G1)) ∩ (V2, L2(G2))
wchich is of the type 1 and contains the sentences ambmam and only such sentences. We
utilize the intersection grammar G for derivation of the sentences of the language L.
The utilizing of the fourth rule from the first family on the string xyz with the result uwv

wil be described as followes: xyz
I/4⇒ uwv, optionally multiple application of rules from

the part III as xyz
III∗⇒ uwv.

1) γ55
I/6→ α3γ45

I/4⇒ α1α2γ45
I/10⇒ α1α2γ15

II/1⇒ α1γ24γ13
III⇒ γ14α2γ13

II/5⇒ γ11α2γ13
II/4⇒

II/4⇒ γ11γ22γ11
IV ∗
=⇒ aba.

2) γ55
I/6→ α3γ45

I/2⇒ α1α3α2γ45
I/4⇒ α1α1α2α2γ45

I/8⇒ α1α1α2α2α4γ45
I/5⇒ α1α1α2α2α1γ45

I/10⇒

I/10⇒ α1α1α2α2α1γ15
II/1⇒ α1α1α2α2γ14γ13

III ∗
=⇒ α1γ14α2α2α1γ13

II/2⇒ α1γ14α2γ22γ13γ11
III⇒
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III⇒ α1γ14γ22α2γ13γ11
II/4⇒ α1γ14γ22γ22γ11γ11

II/3⇒ α1γ14γ22γ22γ11γ11
II/3⇒ γ14γ14γ22γ22γ11γ11

II/5 ∗
=⇒

II/5 ∗
=⇒ γ11γ11γ22γ22γ11γ11

IV ∗
=⇒ aabbaa = a2b2a2

We constract a new grammar G specialized in the language with the sentences anbnan.with
the alphabet of nonterminals U − V = {S, A,B,C, D} where S is the initial symbol, with
the alphabet of terminal symbols V = {a, b}, database vocabulary U and with the rules

R: 1) S → ABC, 2) AB → AAD,
3) DC → BBCC, 4) DB → BD,
5) A → a 6) aB → ab

7) bB → bb 8) bC → bc

9) cC → cc

what can be written G = (U ,V , S,R). We show that the derivations building by the gram-
mar G is more simple than the building by the intersection grammar G. We infer also the
sentences aba and a2b2a2.

S
1→ ABC

5,6,7,8,9 ∗
=⇒ abc

S
1→ ABC

2⇒ AADC
3⇒ AABBCC

5,6,7,8,9 ∗
=⇒ a2b2a2

A more complex is the derivation of the sentence a3b3a3 We aply also the fourth rule in
this derivation. We receive:

S
1→ ABC

2⇒ AADC
3⇒ AABBCC

2⇒ AAADBCC
4⇒ AAABDCC

3⇒
3⇒ AAABBBCCC

5,6,7,8,9 ∗
=⇒ a3b3c3

3.2 Assertion The language anbnan is not the language of the type 2.

Proof. We suppose that G is a type 2 grammar of the language (V, L) = anbnan.Language
(V, L) contais infinitaly many sentences, but the grammar G has a finite vocabulary.
Therefore we can find an A ∈ U −V which is included in infinitely many terminal deriva-
tives in their penultimate string. There exists a string of maximal length z conteining
only terminal symbols among the the set of rules of the form A → v which is finite. Let
be | z |= q where q is natural number. There exist out of number terminal stringsfor

which A
∗⇒ w and | w |> q

Let us suppose the sentence anbnan such that n > q .This sentence arose from the string
xAy using the rule A → z. Appliing on the string xAy overwrite mode A

∗⇒ w insted of
A → z we receive sentences which do not attache to the language (V, L). In particular:
The penultimate string ahead of the application of the rule A → z, | z |< q acquires some
of the following forms:

1) xAy = asAatbnan, 4) xAy = anbsAat,
2) xAy = asAbtan, 5) xAy = anbnasAat,
3) xAy = anbsAbtan, where s, t = 0, 1, . . . n and A0 = B0 = λ.

We choose some of overwrites A
∗⇒ w where | w |> q and we receive strings which do not
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belong to the language (V, L) generated by intersection grammar G. Hence the grammar
of the type 2 does not generate the language with sentences of the form anbnan.

3.3 Remark There exist languages (V, L1), (V, L2) of the type 1 for whose the inter-
section language (V, L1) ∩ (V, L2) is of the type 3.

Let (V, L1) = {ambnambnccc}, m, n ≥ 1 and (V, L2) = {cccambmambn∪ababccc}, m, n ≥ 1
both this laqnguages are of the type 1 [1]. The intersection language (V, L1) ∩ (V, L2)
contains one and only one sentence ababccc which can be generated by grammar
G =< U, V, S,R >, where U = {A, B, C,D, M, N, S, a, b, c}, V = {a, b, c}, S is the initial
symbol and

R : S → aA D → cM ,
A → bB M → cN,
B → aC N → c,
C → bD

The system of rules R of the grammar G satisfies the condition F from the definition 2.7.
Hence G is of the type 3 and the intersection language (V, L) is also of the type 3.
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