
EFFICIENT USE OF THE GRAPHICS CARD FOR

MATHEMATICAL COMPUTATIONS ∗

V́ıtězslav V́ıt VLČEK

University of West Bohemia in Pilsen
Department of Mathematics

vsoft@kma.zcu.cz

Abstract

The performance of a new graphics card is so high that we can use it for mathe-
matical computations. I explain how we can use the graphics performance for math-
ematical computation in this brief report. The result of this article is the following.
The speedup of the adding of two matrices is approximately 6 times as compared with
the standard CPU.

1. Introduction

Recently the new graphics cards were introduced which have the high performance
processor. This processor is called graphics processing unit (GPU) and it can process
a lot of graphics data at a time. The performance of the GPU can be more than
common CPU (central processor unit) in some cases. This is the reason why I try to
use the graphics card for mathematical computation especially for vector or matrix
addition.

2. Programming Languages and GPU

First I would like to introduce the programming languages of the GPU. The
programming languages for the GPU are divided into two worlds: Microsoft Windows
and Linux. The world of MS Windows consists of the high-level shader language
(HLSL) in particular and a system for programming graphics hardware in a C-like
language (Cg) is well known in the Linux world. It is necessary to say that the HLSL
and the Cg are semantically 99% compatible. The main difference between HLSL
and Cg is in the GPU interface. The HLSL is a part of Microsoft Direct X 9.0 (D3D)
while the Cg can use the OpenGL (OGL) or the D3D.

Of course, there are further languages for the GPU like the Brook (a stream
language), the ShLib, etc. These types of the languges facilitate the graphics frame-
work but they have more disadvantages and they are too restrictive. We can use the
assembly language for the pixel shader but it is too difficult.

∗This work was supported by grant No. 1354/2004/G6 of the FRVS of the Czech Republic.

1



The rest of this section concerns types of the graphics cards. We cannot use
an arbitrary graphics card. The graphics card has to contain the programmable
pixel shader (PS). The programmable pixel shader is a processor which processes
the graphics data. Unfortunately, every graphics card does not have its own PS
because of the high price. The development of the graphics card is too fast hence
there are a few versions of the PS yet.

The survey shows the chronological order of the PS version.

• PS 1.0 — The hardware for this version was never released.

• PS 1.1 — The company nVidia released the GeForce card which started the
wave of shader programming.

• PS 1.2–1.4 — This versions are the improvement of previous versions (speed,
new instructions, etc.).

• PS 2.0 — The new features of this version are the floating point textures, the
branching of the code, etc.

• PS 3.0 — This version will contain the dynamic code loops, etc.

The further table shows the properties of the some graphics cards.

Manufacturer Chip PS version

nVidia GeForce2 3.0 (sw emulation)
nVidia GeForce3–Ti 1.3
nVidia GeForceFX 2.0
ATI Radeon 8200/9100/9200 1.4
ATI Radeon 9600/9800 2.0

Table: The properties of the graphics cards

3. Representation of Matrix in GPU

I focus on the graphics card with the PS 2.0 because the PS 2.0 provides the
floating point data processing. The previous versions of the PS only facalitated the
8-bit data processing and it is unsuitable for mathematical computing.

3.1. Textures and Matrices

The main use of the D3D is for the game developing (i.e., the modelling of the
3D world, . . . ). The building stone of the D3D is a triangle. Two particular tri-
angles make a square. The square can be covered with a texture. So the texture
is a bit map which is mapped to the square (polygon). The texture data depend
on the texture (or pixel) format (TF). The D3D defines some texture formats (see
table). There are the fixed point and the IEEE floating point texture formats. The
formats D3DFMT R32F and D3DFMT A32B32G32R32F are suitable for mathe-
matical computations because of the floating point structure. The GPU is a vector

2



processor which can process the alfa, red, green, blue data in parallel hence the
D3DFMT A32B32G32R32F texture format is the best for our purposes.

The texture is actually a matrix in the mathematical sense but there are some
specialities. A point of the texture consists of four entries (alfa, red, green and blue
color) which are the floating numbers (see figure). These four numbers are processed
in GPU at a time.

D3D TF Description

D3DFMT R8G8B8 fixed point - 24-bit RGB pixel format with 8 bits
per channel

D3DFMT A8R8G8B8 fixed point - 32-bit ARGB pixel format with alpha,
using 8 bits per channel

D3DFMT X8R8G8B8 fixed point - 32-bit RGB pixel format, where 8 bits
are reserved for each color

D3DFMT R32F IEEE floating point - 32-bit float format using 32
bits for the red channel

D3DFMT A32B32G32R32F IEEE floating point - 128-bit float format using 32
bits for each channel (alpha, blue, green, red)

Table: The Direct X 9.0 texture formats

size of texture (2,2)[0,1)

[0
,1

)

size of matrix (2,8)

a

a

a

a

r

r

r

r

g

g

g

g

b

b

b

b

[0,0]

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0.5,0.5] [0.5,0.5] [0.5,0.5] [0.5,0.5]

[0,0] [0,0] [0,0] [0.5,0] [0.5,0] [0.5,0] [0.5,0]

Point of texture [0,0] Point of texture [0.5,0]

Point of texture [0,0.5] Point of texture [0.5,0.5]

1

9

2

10

3

11

4

12

5

13

6

14

7

15

8

16

a

a

a

a

r

r

r

r

g

g

g

g

b

b

b

b

[1,1]

[2,1] [2,2] [2,3] [2,4] [2,5] [2,6] [2,7] [2,8]

[1,2] [1,3] [1,4] [1,5] [1,6] [1,7] [1,8]

1

9

2

10

3

11

4

12

5

13

6

14

7

165

8

16

Figure: The mapping of the texture points to the matrix entries

3.2. Pixel Shader Program

I would like to focus on the pixel shader in this section. The PS is a processor to
which the program and the data (textures) are incoming. The output of the PS is

3



the texture (the render target in D3D) or the textures, it depends on the features of
the graphics card, which contains the computed values. The computed values are in
the same format as the input textures. The PS program can only read the bounded
count of the texture points (aprox. 12, it depends on the card) and only has to write
one texture point (both in one step). There is a further restriction for writing the
texture point; the PS program obtains the output texture coordinates from the PS.
So the PS program cannot write where it wants but the PS program has to write
there where the PS wants. This is one of biggest restrictions. The PS can only do the
static loops which the compiler unrolls. The PS program cannot access the output
data. For an example of the pixel shader program for addition of two matrices see
appendix.

3.3. Graphics Framework for Mathematics Computation

We need an additional program for the loading of the data and the PS program
into the graphics card. I call this program the graphics framework. This program
(the graphics framework) uses the interface of Microsoft Direct X in case of the
HLSL.

The following list shows the points which we have had to carry out before the PS
starts the PS program.

1. Initialize Direct 3D.

2. Create a square for the texture mapping.

3. Create textures and fill in data.

4. Create render target texture.

5. Load the PS program into graphics card.

6. Load the data into graphics card.

7. Start the rendering of the scene. It means that the PS runs the PS program
on each pixel of the render target.

8. Read the render target texture for the computed data.

As we can see it is quite difficult.

4. Computation Experiments

I would like to show the test task where I would like to illustrate that the GPU
computation is faster than the CPU computation in this section. I chose the test task
C = A + B (the addition of two big matrices). I created the purely CPU program
and the program for GPU. The resulting speed is shown in the following table.

4



N GPU-time CPU-time Speedup

1 375/5625 62/2765 0.5
2 375/6843 140/2937 0.4
10 375/6953 718/3453 0.5
100 406/7671 7157/9875 1.3
1000 8187/15609 73406/76109 4.9 (8.2)∗

10000 84531/92265 718515/7212186 7.8
Table: Comparison of the GPU-CPU computing

The size of the matrices was 1024 × 4096. The column N means the number of
repeated addition. The GPU-time and CPU-time contain two values. The first
of them is the time of addition in milliseconds and the second value is the total
running time of the program in milliseconds. The column Speedup is the speedup
ratio=CPU total time/GPU total time. The value with ∗ means speedup ratio of
the matrix entry multiplication – if we replace + with * (C = A. ∗B in the Matlab
sense).

I used CPU Pentium 4 2.8GHz and Radeon 9800.

5. Conclusion

We can see in the comparison table that the GPU computing is not always efficient
especially if we have a low count of the data operations or small data. But if we
process a lot of data then we can expect certain speedup. The further problem is to
limit significantly program complications and necessity of the graphics framework.

The reasons why to use the graphics card for mathematical computation are the
price of graphics card which is significantly lower than the cost of an equivalent CPU,
the further advantage is the extra memory on graphics card.

I would like to implement the matrix-matrix, matrix-vector multiplication as I
expect some speedup here, too.

References

[1] Microsoft: The MSDN Library. Microsoft, 2001.

[2] Luna, F.: Introduction to 3D Game Programming with DirectX 9.0. Wordware
Publishing, ISBN 1556229135, 2003.

Appendix — Pixel Shader Program

The pixel shader program for addition of two matrices.

texture textA;

texture textB;

float gMul;

sampler SamplerA = sampler_state {

Texture = <textA>;

5



};

sampler SamplerB = sampler_state {

Texture = <textB>;

};

struct Vs_Input {

float3 vertexPos : POSITION;

float2 texture0 : TEXCOORD0;

float2 texture1 : TEXCOORD1;

};

struct Vs_Output {

float4 vertexPos : POSITION;

float2 texture0 : TEXCOORD0;

float2 texture1 : TEXCOORD1;

};

struct Ps_Output {

float4 color : COLOR;

};

Vs_Output VS(Vs_Input IN){

Vs_Output vs_out;

vs_out.vertexPos = float4(IN.vertexPos, 1);

vs_out.texture0 = IN.texture0;

vs_out.texture1 = IN.texture1;

return vs_out;

}

Ps_Output PS(Vs_Output IN) {

Ps_Output ps_out;

ps_out.color=tex2D(SamplerA, IN.texture0)+

gMul*tex2D(SamplerB, IN.texture1);

return ps_out;

}

technique MatrixSum {

pass Pass0 {

Lighting = FALSE;

VertexShader = compile vs_1_1 VS();

PixelShader = compile ps_2_0 PS();

}

}

6


