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Abstract

Modelling of heat propagation in buildings, consisting of rooms separated by in-
ner walls and covered by outer walls, roofs, etc., belong to serious non-trivial prob-
lems of civil engineering design. Especially in rooms the classical heat conduction
analysis (using the Fourier -Kirchhoff approach) gives no reasonable results because
the air flow, driven by outer climate quasiperiodic changes, forces quite other time-
variable redistributions of a temperature field. Thus, three physical conservation
principles have to be respected – of mass (generating one continuity equation), of
momentum (generating three equations of viscous air flow of the Navier - Stokes
type) and of energy (generating one equation of heat transfer that can be identified
with certain extended version of the Fourier -Kirchhoff equation). Nevertheless,
such general system is complicated and corresponding numerical calculations are
slow and expensive. This paper discusses admissible simplifications and presents
the original MATLAB-based software code for the analysis of simultaneous air flow
and heat conduction both in rooms and in construction parts, implementable on
standard personal computers without higher hardware of software requirements.
One two-dimensional example with a realistic room size and air characteristics is
demonstrated.
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tion, Navier - Stokes equations, Boussinesq approximation, method of Rothe, finite
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1 Introduction

For all rooms of buildings and other parts of structures where long-time human activities
are assumed the good prediction of a temperature field development, caused by outer
climatic changes, artificial heating, air conditioning, etc., is necessary. Simple calculation
methods, based on the analysis of the classical heat conduction equation, are friendly even
to persons with a non-positive relation to higher mathematics, but they are far to the
reliable description of reality because the most part of volume of such buildings and similar
structures consists of air in rooms with a very low thermal conduction factor, but with a
good ability of flow through such empty space. This is a sufficiently serious motivation
for the development of physically and technically reasonable (not only mathematically
correct) analysis of such temperature redistribution; this analysis (unlike the complete
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study of the system of Navier - Stokes equations) should not require large and expensive
calculations, making use of parallel computer architectures.

The aim of this contribution is to show (at some non-trivial level of understanding the
heat transfer in buildings) that this process of changes of a temperature field, determined
by air flow (and usually only slightly modified by classical heat transfer) can be simulated
using the standard personal computer with (or without) installed MATLAB software. All
software modules are designed to be convertible to modules included into C++, Fortran,
Pascal and similar programs. In this way they are able to create elements of a more
complex computational system for the thermal (and other, respectively) analysis of large
structures and constructions in civil engineering.

2 Methods of modelling of thermal transfer in build-

ings

For the study of heat transfer through all layers of walls, roofs, etc., the application
of the classical equation of heat conduction can be successful. In the most simple case
of the one-dimensional heat conduction we have one linear ordinary differential equa-
tion of the second order with a variable temperature field (this is the famous historical
Fourier - Kirchhoff equation – see [6], p. 193) that can be completed by a couple of ad-
ditional transfer conditions and (at least for a stationary version with constant material
characteristics) easily solvable, using elementary knowledge of the analysis of differential
equation. In such access we ignore the fact that real material characteristics are typ-
ically (usually not very strongly) temperature-dependent (this disturbs the announced
linearity); moreover, it is very important whether the applied (typically porous) material
contains pores occupied by air with vapor, (condensed) liquid water or ice. Especially
the last two cases are very unpleasant (but not able to be avoided completely) in practice
and their modelling is much more complicated; the more detailed information (including
a lot of references), concerning complex problems of “HAM (= heat, air and moisture)
modelling” in building materials can be found in [10] a [13].

The introduced simple approach is not strictly limited to one-dimensional problems:
natural generalizations to two- and three-dimensional problems are available, but the
resulting equation is partial and corresponding transfer conditions must be applied on the
whole boundary of a domain of interest. From both thermal insulation and accumulation
reasons most constructions in buildings are layered (with jump discontinuities in material
characteristics); therefore the reformulation of an original classical differential equation to
some weak or variational form (friendly to finite element techniques) can be recommended.

Nevertheless, this approach (both in a differential and in an integral form) is a failure in
case of simulation of heat transfer through rooms, containing air. The low heat conduction
factor explains the fact that most predicted (very slow) temperature redistributions are
bad, in contradiction with practical experience and all quantitative measurements: in fact,
in this way we make the proper analysis of a nearly insignificant process, but the essential
changes in a temperature field are caused by (much faster) motion of air particles. This



discouraging conclusion can be compensated by various ways – here we shall mention four
representative ones:

• the mathematically simple, but not very apposite idealization of a temperature field
as constant in the whole room, variable only in time, depending on the heat transfer
through walls – such system approach is presented in [11] and [12],

• the formulation of a coupled evolution problem of heat transfer and fluid (air) dy-
namics with a low (but finite) viscosity, based on some generalized version of the
system of Navier - Stokes equations, probably with large and slow calculations, crash-
ing in case of insufficiently robust software support (for example, in the numerical
analysis of large systems of nonlinear algebraic equations as discretized versions of
partial problems of elliptic type, needed in all time steps for the construction of
Rothe sequences in the method of discretization in time),

• the aspiration to simplify the preceding formulation, based on the neglecting of non-
substantial terms, using the proper physical and technical analysis, leading to some
relatively cheap and sufficiently reliable credible simulation of reality,

• the use of commercial software packages of different extent, expertness and prize (as
ANSYS, SYSTUS, COSMOS, I-DEAS, FLOTRAN, etc.) for the solution of prob-
lems of continuum mechanics as “black boxes” (the incompleteness of theoretical
manuals and various complications in all attempts to incorporate needed functions
into some software system with quite other professional orientation and priorities
can be expected, apart from the license difficulties), alternatively alienation of (at
least seemingly convenient) software means at some “friendly” institution.

In the rest of this paper we will follow the third approach. For the sake of brevity
of notation and simplicity of explanation we shall concentrate our attention to a partial
problem of a temperature development in one typical room, occupied by air; this problem
is the most complicated both from the point of view of mathematical formulation and from
the point of view of an optimal design of numerical algorithms and their implementation.

3 Mathematical analysis of air flow and heat transfer

in a room

In the analysis of air flow and heat propagation in an arbitrary room, described by a do-
main Ω geometrically, in general in the three-dimensional Euclidean space, the knowledge
of the following air characteristics on Ω and ∂Ω will be needed:

λ heat conduction factor [W/(m K)] on Ω (cf. [6], p. 57),

α heat convection factor [W/(m2 K)] on ∂Ω (cf. [6], p. 56),

c thermal capacity [J/(kg K)] on Ω (cf. [6], p. 52),



η viscosity factor [Pa s] on Ω (cf. [5], p. 223) for the ideal viscous (Newton) relation
between tangential stress and strain rate for certain air volume.

These characteristics are (not very strongly) temperature-dependent. Corresponding func-
tions of temperature can be set using [2]; in practical calculations for usual temperature
range, required for human activities in rooms by technical standards, the approximation
of data from corresponding tables, using the cubic polynomials generated by the least
square method, seems to give good results. For the rough orientation the values

λ ≈ 0.025 W/(m K) , α ≈ 7 W/(m2 K) , c ≈ 1010 J/(kg K) , η ≈ 18 × 10−6 Pa s

are applicable, too, together with the usual air density ρ = 1.293 kg/m3 (cf. [5], p. 225).

In [13], p. 39, from the conservation principles for mass, inertia and energy the general
system of equations of air flow in a room, caused by temperature changes, has been
derived. This system is rather complicated and the suggested general algorithm cannot
be implemented on a standard personal computer completely. Although some turbulent
flow can be expected, a lot of terms in presented equations may be simplified of neglected
at all. Especially the Mach number Ma (a typical flow rate, divided by a rate of sound
propagation in air) can be supposed to have the property Ma ≪ 0, 3; in this case [3], p. 2,
recommends to ignore the air compressibility in the continuity equation, obtained from
the mass conservation principle. This leads to the so-called Boussinesq approximation
(explained in [3], p. 915, in details), making use of an additional auxiliary air characteristic
– of the extensibility coefficient γ; here we shall have γ = 0.00366 K−1 (its constant value
corresponds to an isothermal process).

For the preliminary qualitative analysis of air flow with heat propagation some dimen-
sionless technical constants are interesting; a very extensive overview of such constants
can be found e. g. in [6]. In this paper we shall need the Prandtl number Pr (by [6],
p. 89), the Rayleigh number Ra (by [3], p. 214), and a the Reynolds number Re (by [5],
p. 229), from definitions

Pr =
ηc

λ
, Ra =

ρ2gγTH3

η2
· Pr , Re =

ρvH

η
.

In such definitions we do not know some quantities exactly, but we are able to do their
reasonable estimate: H should be a characteristic length that can be taken as the height of
our typical room H = 5 m, and T has to be an expected difference between the maximum
and minimum temperature – for this purpose we are allowed to set T ≈ 2 K. In this way
we can evaluate Pr ≈ 7.272 and consequently Ra ≈ 3.368 × 1010. A reliable estimate of
the air flow rate v (in absolute value), needed for the evaluation of Re, is not available,
but we can come out from the discussion in [3], p. 372: the influence of gravity effect is
negligible for Re ≫ 104 Ra. This yields

v ≫
104 Ra η

ρH
≈ 9.378 × 108 m/s .

To reach such velocity is quite impossible in practice (the maximal velocity of the hurricane
Ivan in Florida in September 2004 was lesser than 50m/s).



Thus, an announced idea that the main physical process in our model must be the air
flow in a room, conditioned by the presence of gravity and caused by some temperature
change in outer environment with the secondary temperature redistribution in a room,
seems to be correct; the effect of the classical heat conduction (especially with respect to
the low value of λ) will be less important. Nevertheless, drastic differences in compar-
ison with “nice textbook” character of viscous (turbulent) flow modelled in [3], p. 215,
with Pr = 10−1 and Ra = 105 have to be expected; substantial complications both in
mathematical analysis and in practical computations will be mentioned later.

These considerations validate several simplification of equations derived in [13], pp. 39-
41. Nevertheless, following these equations arbitrary indices i, j ∈ {1, 2, 3} will be taken
as sum indices in sense of the Einstein summation rule, and a dot will denote a partial
time derivative by a variable xi or xj where x = (x1, x2, x3) are Cartesian coordinates
of an arbitrary point of Ω, or on ∂Ω, respectively (if two indices occur, a second partial
derivative by corresponding variables).

Following both [8] and [1] (in agreement with [3], pp. 15 and 158), let us treat the
air density as constant in convective and non-stationary terms and as variable only in
gravitational terms. Then it is sufficient to work with two independent fields of time-
variable quantities on Ω: of the temperature T and of the (three-component) flow rate
v = (v1, v2, v3). This is possible because the differential continuity equation, coming from
the mass conservation principle, gets a very simple form

vj,j = 0 , (1)

restricting the choice of admissible flow rates on Ω only; the variable pressure from the
Gay - Lussac law and also the variable density can be then eliminated (using the method
described in [3], p. 9 – the reference pressure corresponding to the standard air pressure
in the corresponding height is considered). The inertia conservation for certain reference
temperature Tc (influencing the setting of the coefficient γ) yields a trinity of differential
equations of air flow on Ω

ρv̇i + ρvi,jvj − ηεij,j(v) = −γgi(T − Tc) ; (2)

here g1 = g2 = 0 a g3 = −g and on ∂Ω homogeneous Dirichlet boundary conditions
v1 = v2 = v3 = 0 are preserved. The energy conservation then implies (if no additional
energy sources are installed in a room) one differential equation of heat conduction on Ω

ρ(cT )̇ + ρ(cT ),jvj − λT,jj = −ηεij(v)εij(v) , (3)

supplied by some boundary condition of heat convection on ∂Ω in form

λT,jνj + α(T − T∗) = 0 (4)

where T∗ represents the prescribed development of the outer temperature in time a ν =
(ν1, ν2, ν3) denotes unit vectors of outer normals to ∂Ω.

The transformation of the system of equations (1), (2), (3) and (4) to a weak form,
based on the Green - Ostrogradskǐı theorem (on integration by parts), can be done in



the same way as in [13], p. 44: the boundary condition (4) is included in the unique
integral equation of heat conduction, coming from (3), and the integral equation of air
flow, generated by (2), has to respect the condition (1) for every choice of test air flow
rates. The resulting equations can be also divided by the density ρ and by some reference
value of the specific heat c (related technical difficulties can be overcome using the same
access as in [13], p. 42).

Let us now notice what happens if we try to ignore the air viscosity, and therefore to
set η ≈ 0. For simplicity let us discuss only a stationary problem (with v̇i = 0) and believe
that we are able to know T in all equations (2) in advance. We obtain three differential
equations of the first order; consequently, we cannot expect strict preservation of zero
velocities on ∂Ω (this is most evident in case of an one-dimensional problem where we
would receive one strongly nonlinear equation of the first order, but with two Dirichlet
boundary conditions) and, moreover, the preservation of one additional condition (1). For
sufficiently viscous liquids the term −ηεij,j(v) dominates in (2); such term is only slightly
nonlinear (because the factor η is a function of T ); unfortunately, for air this is not true –
here the dangerous nonlinear term ρvi,jvj prevails. In practical calculations this fact is able
to force always the analysis of the whole problem as evolution problems (the stationary
problem is closed to a problem which is not solvable – consequently after the discretization
no appropriate solver for the corresponding large system of strongly nonlinear algebraic
equations may be available). Even the introduction of (Lebesgue and Sobolev) function
and abstract function spaces and subspaces containing sought solutions is not easy; for
more information we can refer to [4] where some theoretical (rather complicated) formulae,
estimating errors of approximate solutions in norms of such spaces, are derived, too.

Although unpleasant nonlinearities occur also in the equation (3), the main source of
computational complications stay facts discussed in the previous paragraph. The direct
solution of a stationary problem is often impossible (if needed, e. g. in the description of
some initial status, an iteration procedure from an artificial formulation of an evolution
problem would be applied). Nevertheless, the following numerical results will demonstrate
that the prediction of heat propagation, conditioned by air flow in a room, is possible (at
least for the two-dimensional problem) with help of usual personal computer and standard
MATLAB software.

The evolution problem, based on the weak formulation of (2) a (3) with the incor-
porated condition (4), can be studied using the construction of Rothe sequences of ap-
proximate solutions (solutions of partial problems in time steps), corresponding to some
semidiscretization in time (cf. [13], p. 43). It remains to force the validity of (1) in every
time; this can be done using the algorithms of type SIMPLE, analyzed in [15]. Such partial
problems can be discretized on a three-dimensional (or on a simplified two-dimensional)
domain Ω using the finite element technique (alternative ways of discretization, making
use e. g. of the finite volume or difference method, we will not discuss here). In this
paper we shall present only one easily intelligible two-dimensional problem – from the
geometrical point of view it may be characterized as a vertical cut of one (sufficiently
long) room.



4 MATLAB-based software development

The software package MATLAB and its incorporated toolbox PDE (for the numerical
analysis of partial differential equations and their systems) offer functions for triangular
mesh generation on an arbitrary two-dimensional domain, functions for allocation and
analysis of sparse matrices, generated by discretized partial differential operators and
(implicitly included) functions for the effective analysis of large sparse systems of linear
algebraic equations. For the solution of nonlinear algebraic systems numerous functions
from the mathematical library NAG are available. MATLAB offers also tho possibility to
call functions written in its own language (in certain standard form) from codes written
in common programming languages, namely from C++, Pascal and Fortran (therefore
program debugging can apply achievements of such environments as Visual C++, C++
Builder or Delphi). Let us notice that calling MATLAB functions can be avoided elegantly,
using the method described in v [14], but the amount of programmer’s work would increase
in our case significantly (but, from the juridical point of view, no MATLAB license would
be necessary).

For the numerical analysis of the system (2) (including (4)) a (3) the original pro-
gram code in the MATLAB language has been created; the preservation of (1) is forced
in this code by the SIMPLE algorithm (with matrix pseudoinversions, applying MAT-
LAB functions again). The setting of several basic inputs is interactive, other data are
read from common text files. The graphical outputs of computation results make use of
the MATLAB postprocessing; outputs are alternatively saved in files in the ∗.epa format
(which means “encapsulated PostScript”) for future interpretation (e. g. in this contribu-
tion). Special original additional functions support various presentation forms in discrete
time steps or animation on selected time intervals both of the temperature T and of the
air flow rate v = (v1, v2). The call of this software from external programs is assumed
using the MATLAB Engine; this software access is introduced in Part 5 of the MATLAB
documentation [7].

5 Numerical results

As our model problem let us study a vertical cut through one room with the same width
and height H = 5 m now. (The height may seem to be large, but all participants of the
3th mathematical workshop can see that the height of rooms at the Faculty of Civil Engi-
neering in Brno in frequently higher.) The outer temperature oscillates quasiperiodically
in day and year cycles; in our example we shall trace only one relatively quick (but realis-
tic) temperature change: the constant temperature 19◦ C in our whole room will start to
increase in time t = 0 s on the outer wall surface such that in time t = 400 s it will reach
21◦ C, but on the inner wall surface it will be unchanged and on the floor and ceiling its
distribution will be linear. The temperature change will be continuous in time; for its
description we shall use the elementary function cos(. . .). The square domain (every side
is 5 m long) we shall divide (rather roughly) to identical triangles using the regular mesh
whose geometry is clear from Fig. 1. Using such mesh, in addition to the distributions of



T a v we can see some purely numerical effects (with no physical background), caused by
different numbers of triangle edges going to various mesh nodes.
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Fig. 1: Regular decomposition of Ω to triangular finite elements

The figure couples, presented on next pages, depict (each one from a couple in an
other way, as T is a scalar field, but v is a vector field) the temperature and air flow rate
distributions in the following times:

• t = 200 s (in one half of the outer temperature enhancement) – Fig. 2 and 3,

• t = 400 s (at the end of the outer temperature enhancement) – Fig. 4 and 5,

• t = 2000 s (at the end of calculation, far from the end of the outer temperature
enhancement) – Fig. 6 and 7.

We can see that the air flow is rather weak (its rate is low) and its assessment is limited
to the vicinity of the outer wall. But, even in this case, the temperature redistribution is
driven by the air flow; the contribution of the classical hat conduction in nearly invisible in
all graphs. Nevertheless, let us remark that we must believe that the air flow has no other
sources – we force the zero flow rate on ∂Ω which can be violated e. g. in case of an open
window. From our sequence of figures we can also see that the rough simplified approach
of [11] a [12] with the non-variable temperature in a room (in a fixed time) in not a
nonsense totally – except some air layer near both walls, the floor and the ceiling (namely
near the outer wall) this evidently non-physical assumption seems to be approximately
respected in all studied times.
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Fig. 2: Temperature in time t = 200 s
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Fig. 3: Air flow in time t = 200 s
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Fig. 4: Temperature in time t = 400 s
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Fig. 5: Air flow in time t = 400 s
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Fig. 6: Temperature in time t = 2000 s
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Fig. 7: Air flow in time t = 2000 s



The resulting air flow character differs from demonstrations from [3], pp. 214-215
strongly. We have accented that we have quite other numbers Pr a Ra. Further numeri-
cal experiments (not presented in details in this paper) show that more similar results to
above mentioned ones (with one nice great whirl in a square) can be attached with much
larger η or with much more λ, respectively (then the distribution of T tends to linear one).
Unfortunately, such tricks are in contradiction with realistic air characteristics (functions
of T ), whose overview can be found in [2].

6 Conclusions and generalizations

The new software offers a chance to prepare a modular system for the thermal analy-
sis of structures, whose part can be also the reasonable prediction of the temperature
development in rooms, compatible with the theory of Navier - Stokes equations, without
high software and hardware requirements. The same software can be applied to the heat
conduction in porous materials in walls, roofs, etc.; in such cases the heat conduction
prevails and the air flow (due to the amount and structure of a pore space) is much less
significant. Other complications then occur: in many structures no applied materials are
homogeneous and isotropic, the air flow is conditioned by the macro- and microstructure of
a pore space that, moreover, determines also the moisture transfer (which is much slower
than the heat transfer) in various phases, modifying material characteristics radically, etc.

The applied toolbox PDE from MATLAB contains no special support for the problems
of flow of liquids (only for the problems of heat conduction, not sufficient here). Nev-
ertheless, general functions for the analysis of boundary problems of partial differential
equations and their systems on a two-dimensional domain Ω are useful; some restrictions
are forced by strong nonlinearities. This gap has been overcome by the software package
FEMLAB, suggested originally as a competitive alternative of the toolbox PDE (now
offered as a MATLAB independent software). Its user-friendly properties are seemingly
compensated by lower flexibility; high flexibility (together with numerical efficiency and
compatibility with other software means) was always one of main advantages of MATLAB
(in contrast to the ANSYS-like software). The development of the toolbox PDE (unlike
FEMLAB) has been closed yet; therefore it will be necessary to verify also the possibilities
and robustness of FEMLAB functions for the study of problems of type “mass and energy
transfer”, for our purpose for the simultaneous processes of air flow and heat propagation
in buildings, in the very near future.
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[6] Kuneš, J., Modelováńı tepelných proces̊u, SNTL Prague 1989.

[7] MATLAB API – Application program interface guide, The MathWorks Natick 1997.

[8] Rehm, G. – Baum, H. R., The equation of motion for thermally driven, buyonant
flow, Journal of Research of the National Bureau of Standards, Vol. 83 (1978), No. 3,
pp. 297-308.

[9] Rieder, F. – Kernbichler, W. – Schürrer, F., Flüssigkeitdynamik mit FEMLAB, Tech-
nische Universität Graz 2002.

[10] Straube, J. – Burnett, E., Review of modelling methods for building enclosure design,
University of Waterloo 1999.
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