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Introduction

In this contribution we summarize and extend well-known examples of orthogonal trajec-
tories in elementary mathematics. Orthogonality is required and useful property in many
technical applications.
Consider the system of curves F (x, y, c) = 0 in the plane, where c ∈ R, and let

Φ(x, y, y′) = 0 be their differential equation. Hence Φ(x, y,− 1
y′ ) = 0 is the differential

equation of their orthogonal trajectories G(x, y, k) = 0, where k ∈ R.
Consider two orthogonal systems of curves in the plane � = f1(ϕ, c), � = f2(ϕ, c) in

polar coordinates, where c ∈ R. The condition of orthogonality of these systems is
df1

dϕ
.
df2

dϕ
= −�2.

Consider the autonomous system of differential equations in the plane

dx

dt
= f (x(t), y(t)) ,

dy

dt
= g (x(t), y(t)) , (1)

where f a g are continuous functions in a domain Ω ⊆ R2. The solution of the system (1)
is x = x(t), y = y(t). The graph of solution of the system (1) is a curve in Ω ×R. The
perpendicular projection of the graph of solution to the domain Ω is a curve given in the
parametrical form x = ϕ(t), y = ψ(t), where t ∈ J ⊆ R, called a trajectory of the
system (1).
Solving the system x′ = f(x, y), y′ = g(x, y) is the same as solving differential equa-

tions dy
dx

= g(x,y)
f(x,y)

in the domain G1 = {(x, y) ∈ Ω : f(x, y) �= 0} and dx
dy

= f(x,y)
g(x,y)

in the
domain G2 = {(x, y) ∈ Ω : g(x, y) �= 0}. It can be expressed in a symmetrical form
f(x, y)dy − g(x, y)dx = 0.
Using the complex value z = x+iy we can write the autonomous system x′ = f(x, y),

y′ = g(x, y) like
z′ = F (z), (2)

where ′ = d
dt
and F (z) = f(x, y) + ig(x, y) is a complex function.

Consider two autonomous systems x′ = f(x, y), y′ = g(x, y), and x′ = −g(x, y),
y′ = f(x, y). The trajectories of both autonomous systems create an orthogonal grid in
Ω ⊆ R2.
If we multiply the function F = f +ig by the imaginary unit i , we obtain the function

iF = −g + if .
The theory of stationary points of linear autonomous systems is well-known.
Denote f1 = ∂f(x0,y0)

∂x
, f2 = ∂f(x0,y0)

∂y
, g1 = ∂g(x0,y0)

∂x
, g2 = ∂g(x0,y0)

∂y
. Suppose that f(x, y),

g(x, y) are continuous functions having continuous partial derivatives of second order in
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the neighbourhood of the point [x0, y0], f1g2 − f2g1 �= 0, and f(x0, y0) = g(x0, y0) = 0.
Then the point [x0, y0] is an isolated stationary point of the system x′ = f(x, y),
y′ = g(x, y). Likewise if the point [0, 0] is an isolated stationary point of the linear au-
tonomous system x′ = f1x + f2y, y′ = g1x + g2y, and his type is node, focus or saddle
point, the type of stationary point [x0, y0] of the system x′ = f(x, y), y′ = g(x, y) is
the same. If the point [0, 0] is isolated stationary point of the linear autonomous system
x′ = f1x+ f2y, y′ = g1x+ g2y, and his type is center, the type of stationary point [x0, y0]
of the system x′ = f(x, y), y′ = g(x, y) is rotation point or focus.

Now we investigate several special functions F (z) in the equation z′ = F (z):

If F = f(x) + ig(y), then we obtain the autonomous system x′ = f(x), y′ = g(y).
We can solve it as two differential equations dx

f(x)
= dt, dy

g(y)
= dt, where f �= 0, g �= 0,

respectively. We can replace this autonomous system by a differential equation dx
dy

= f(x)
g(y)

for f �= 0, or dy
dx

= g(y)
f(x)
for g �= 0. Hence we have an equation y′

g(y)
= 1

f(x)
, where f �= 0,

g �= 0.

If F = f(y)+ ig(x), we obtain the autonomous system x′ = f(y), y′ = g(x). We solve
it like an equation dx

dy
= f(y)

g(x)
for g �= 0, or dy

dx
= g(x)

f(y)
for f �= 0. Hence we have equation

f(y)y′ = g(x) or g(x)x′ = f(y).

If F = f(x) + ig(x), then we obtain the autonomous system x′ = f(x), y′ = g(x).
We solve it like an equation dx

dy
= f(x)

g(x)
for g �= 0, or dy

dx
= g(x)

f(x)
for f �= 0, which leads to

equation x′ = h(x), where h = f/g, or y′ = k(x), where k = g/f .

If F = f(y) + ig(y), then we obtain the autonomous system x′ = f(y), y′ = g(y). We
have dx

dy
= f(y)

g(y)
for g �= 0, or dy

dx
= g(y)

f(y)
for f �= 0, which leads to equation x′ = h(y), where

h = f/g, or y′ = k(y), where k = g/f .

If F = af(x, y) + ibf(x, y), where a, b ∈ R, then we obtain the autonomous system
x′ = af(x, y), y′ = bf(x, y). We obtain dx

dy
= a

b
for b �= 0, or dy

dx
= b

a
for a �= 0. This is an

equation bx′ = a, ay′ = b, respectively, and its solution is ay − bx = c, where c ∈ R.
Especially, for a = 0 we obtain x′ = 0, hence x(t) = const., y′ = bf(y, c), where c ∈ R,

which gives an equation dy
bf(y,c)

= dt, whose solutions are parallel to yt-plane in Ω ×R.
Similarly for b = 0 we obtain y′ = 0, hence y(t) = const., x′ = af(x, c), where c ∈ R,

which gives an equation dx
af(x,c)

= dt, whose solutions are parallel to xt-plane in Ω ×R.

The aim of this contribution is to construct the collection of examples of differential
equations of orthogonal trajectories depending on parameters. In the following examples
we investigate orthogonal trajectories of systems of curves like solutions of convenient
differential equations. In many cases this method is very useful. We will formulate several
geometrical problems, we will solve them using analytical methods and their solutions will
be interpreted geometrically.
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Examples

Example 1. Find orthogonal trajectories of the system of concentric circles.
Without lost of generality we can put the center of the system of concentric circles

into the center of the coordinate system. They have the form

x2 + y2 = c2, where c ∈ R+. (3)

The differential equation of circles (3) is

x+ yy′ = 0. (4)

If we replace y′ by − 1
y′ in (4), we obtain the differential equation of orthogonal trajectories

xy′ − y = 0. (5)

The solution of (5) is the system of lines

c1y − c2x = 0, where c1, c2 ∈ R, (6)

without the stationary point [0, 0].
The orthogonal trajectories of the system of concentric circles is the system of lines

going out from their common center.

Example 2. Find orthogonal trajectories of the system of circles going through one
point and having here the common tangent.
Without lost of generality we can put the common point of the system of circles into

the center of the coordinate system and let x-axis be their common tangent, their centers
lie on y-axis. Their equation is

x2 + (y − c)2 = c2, where c ∈ R. (7)

The differential equation of curves (7) is

2xy =
(
x2 − y2

)
y′. (8)

If we replace y′ by − 1
y′ in (8), we obtain the differential equation of orthogonal trajectories

2xyy′ = y2 − x2. (9)

The solution of (9) is a system of circles

(x− c)2 + y2 = c2, where c ∈ R. (10)

They have centers on x-axis, their common point is the center of the coordinate system
and their common tangent is y-axis.
Orthogonal trajectories of the system of circles going through one point and having

here the common tangent is the system of circles going through the same point and the
tangent of which is perpendicular.
Note that we can rotate the systems of circles (7) and (10) by an angle ϕ. We can

put tgϕ = s, −∞ < s < +∞, s �= 0. Hence we can these orthogonal systems of circles
express as

(x− cs)2 + (y − c)2 = c2
(
1 + s2

)
, (x− c)2 + (y + cs)2 = c2

(
1 + s2

)
, (11)
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where c is any real parameter. They have centers in [cs, c], [c,−cs], respectively, and their
radii are r = c

√
1 + s2. They go through the center of the coordinate system and their

centers lies on lines having an angle ϕ with respect to line coordinates. Their differential
equations are

y′
(
2sxy + y2 − x2

)
= sy2 − sx2 − 2xy, y′

(
2xy − sy2 + sx2

)
= y2 − x2 + 2sxy. (12)

The curves create an orthogonal grid in the plane.
If we translate the center of the system of orthogonal circles (7) and (10) to the point

[a, b], a, b ∈ R, in the plane, we obtain the curves
(x− a− c)2 + (y − b)2 = c2, (x− a)2 + (y − b− c)2 = c2, (13)

where a and b are fixed constant and c ∈ R is parameter. Their differential equations are
2 (x− a) (y − b) y′ = (y − b)2 − (x− a)2 ,

[
(x− a)2 − (y − b)2] y′ = 2 (x− a) (y − b) .

(14)

Example 3. Find orthogonal trajectories of the system of equilateral hyperbolas.
The half-axes of equilateral hyperbolas have the same length and their asymptotes

are perpendicular. Without lost of generality the center of hyperbolas can be placed to
the center of the coordinate system and their asymptotes can be x-axis and y-axis. Their
equation is

xy = c, where c ∈ R, (15)

and their differential equation is
y + xy′ = 0. (16)

If we replace y′ by− 1
y′ in (16), we obtain the differential equation of orthogonal trajectories

yy′ = x. (17)

The solution of the equation (17) is the system of hyperbolas

x2 − y2 = c, where c ∈ R. (18)

The orthogonal trajectories of the system of equilateral hyperbolas is the system of
equilateral hyperbolas, the asymptotes of which are perpendicular.

Example 4. Find orthogonal trajectories of the parabolas y2 = 4c2 (x+ c2), where
c ∈ R.
The vertex of the parabolas

y2 = 4c2
(
x+ c2

)
, c ∈ R, (19)

is in the point [−c2, 0] and their parameter is p = 2c2. The differential equation of
parabolas (19) is

y (y′)2
+ 2xy′ = y. (20)

If we replace y′ by − 1
y′ in (20), we obtain identical differential equation. The equation

(20) is the second order equation with respect to y′. We can express it like product of
two factors (

y′ −
√
x2 + y2 − x

y

)
.

(
y′ +

√
x2 + y2 + x

y

)
= 0. (21)
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The first factor in (21) is a differential equation of first the system of curves, the second
factor is a differential equation of the second system of curves. Both systems of curves
create an orthogonal grid in the plane. If we solve (21), we obtain

y2 = 4k2 + 4kx, k ∈ R. (22)

For k > 0 the system (22) is the original system of parabolas (19), for k < 0 the system
(22) is the system of orthogonal parabolas

y2 = −4c2
(
x− c2

)
, c ∈ R. (23)

The parabolas y2 = 4c2 (x+ c2) and y2 = −4c2 (x− c2), c ∈ R, create an orthogonal
grid in the plain.
In this manner we can create differential equations of orthogonal trajectories:

If we have the differential equation of a system of curves y′ = f (x, y), then the differential
equation of orthogonal trajectories is y′ = − 1

f(x,y)
and

[y′ − f (x, y)] .

[
y′ +

1

f (x, y)

]
= 0 (24)

is the differential equation of the orthogonal grid created by two systems of orthogonal
curves.

Example 5. Find orthogonal trajectories of the system of confocal ellipses.
The confocal ellipses has common foci. Without lost of generality we can put them to

the points ±1 in x-axis. Hence we can express the confocal ellipses as

x2

c2
+

y2

c2 − 1
= 1, where c ∈ R, c > 1. (25)

The foci of ellipses (25) are in the points F [−1, 0] and G[1, 0].
We can convert (25) to

x2

c2
− y2

1 − c2
= 1. (26)

For 0 < c < 1 the equation (26) is equation of confocal hyperbolas. They have common
foci at the points F [−1, 0] and G[1, 0].
The differential equation of the system of confocal ellipses is

xy

(
y′ − 1

y′

)
+ x2 − y2 = 1, y′ �= 0. (27)

If we replace y′ by − 1
y′ in (27), we obtain an identical differential equation. The equation

(27) is a second order equation with respect to y′. By solving (27) we get two systems
of orthogonal curves in the plane – confocal ellipses and confocal hyperbolas. We can
express both systems of curves using one equation

x2

c2
+

y2

c2 − 1
= 1,

where for hyperbolas (26) there is 0 < c < 1, and for ellipses (25) there is c > 1. Both
systems of curves have one differential equation (27).
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The confocal ellipses and confocal hyperbolas with common foci create an orthogonal
grid in the plane.

Example 6. Find orthogonal trajectories of the system of circles going through two
different points in the plain.
The system of circles going through two different point in the plane create the so

called hyperbolical pencil of circles. Both common points are basic points of the pencil.
Without lost of generality we can put the points [0,±1] like basic points of the pencil.
Hence we can express the hyperbolical pencil of circles

(x− c)2 + y2 = c2 + 1, (28)

where c ∈ R. The differential equation of the hyperbolical pencil of circles is
2xyy′ = y2 − x2 − 1. (29)

If we replace y′ by− 1
y′ in (29), we obtain the differential equation of orthogonal trajectories(

1 + x2 − y2
)
y′ = 2xy. (30)

The solution of the equation (30) is

x2 + (y − c)2 = c2 − 1, (31)

where c ∈ R, |c| > 1. This is equation of the elliptical pencil of circles. Limite points of
this pencil are points [0,±1]. We can note that the ultimate points are polarly conjugated
to all circles of elliptical pencil.
The systems of the elliptical pencil of circles and the hyperbolical pencil of circles

create an orthogonal grid in the plane.

Example 7. Find orthogonal trajectories of the system of parabolas with the common
vertex and having here the common tangent.
Put the common vertex of parabolas without lost of generality to the center of the

coordinate system and let their common tangent be an x-axis. They are given by

y = cx2, where c ∈ R. (32)

The differential equation of parabolas (32) is

xy′ = 2y. (33)

If we replace y′ by− 1
y′ in (33), we obtain the differential equation of orthogonal trajectories

−x = 2yy′. (34)

The solution of (34) is a system of ellipses

x2 + 2y2 + 2c = 0, where c ∈ R. (35)

The system of parabolas with the common vertex and which have here the common
tangent create an orthogonal grid in the plane with the system of ellipses having constant
ratio of length of half-axises, the center of which is in the vertex of parabolas.
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We can note that if we find an orthogonal trajectories of the system of curves

y + cxn = 0,

where c ∈ R and n �= 0 is a fixed integer, we obtain

x2 + ny2 + k = 0,

where k ∈ R. This is an equation of ellipses for n > 0 and k ∈ R−, or of a hyperbolas for
n < 0 and k ∈ R.
Thus we can generate examples of orthogonal trajectories depending on parameter n.

Example 8. Find orthogonal trajectories of the system of curves ex sin y = c, where
c ∈ R.
The differential equation of the curves ex sin y = c, where c ∈ R, is

ex sin y + ex cos yy′ = 0.

If we replace y′ by − 1
y′ here, we obtain the differential equation of orthogonal trajectories

ex (y′ sin y − cos y) = 0.

Their solution is a system of curves ex cos y = k, where k ∈ R.
The systems of curves ex sin y = c and ex cos y = c, where c ∈ R, create an orthogonal

grid in the plane.

Example 9. Find orthogonal trajectories of the system of parabolas y2 = a (x− c),
where c ∈ R and a is a fixed real constant.
The differential equation of the system of curves y2 = a (x− c), where c ∈ R is

arbitrary and a is a fixed real constant, a �= 0, is

2yy′ = a. (36)

If we replace y′ by− 1
y′ in (36), we obtain the differential equation of orthogonal trajectories

−2y = ay′. (37)

The solution of (37) is

2x+ a ln |y| = c, where c ∈ R, a ∈ R, a �= 0 fixed. (38)

We can express these curves like exponential functions y = ce−
2x
a , where c ∈ R and a is

a fixed real constant, a �= 0.
The systems of parabolas y2 = a (x− c) and of exponential functions y = ce−

2x
a , where

c ∈ R and a is fixed real constant, a �= 0, create an orthogonal grid in the plane.
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