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Abstract
For systems of retarded functional differential equations with unbounded delay
and with finite memory sufficient conditions of existence of positive solutions
on an interval of the form [t0,∞) are derived.

1 Introduction

In this paper we give sufficient conditions for the existence of positive solutions
(i.e. a solution with positive coordinates on a considered interval) for systems of
retarded functional differential equations (RFDE’s) with unbounded delay and with
finite memory. At first let us give short explanation emphasized above terms.

Let us recall basic notions of RFDE’s with unbounded delay but with finite
memory. A function p ∈ C[R × [−1, 0],R] is called a p -function if it has the
following properties [13, p. 8]:

(i) p(t, 0) = t.

(ii) p(t,−1) is a nondecreasing function of t.

(iii) there exists a σ ≥ −∞ such that p(t, ϑ) is an increasing function for ϑ for each
t ∈ (σ,∞). (Throughout the following text we suppose t ∈ (σ,∞).)

In the theory of RFDE’s the symbol yt, which expresses “taking into account”,
the history of the process y(t) considered, is used. With the aid of p - functions the
symbol yt is defined as follows:

Definition 1 ([13, p. 8]) Let t0 ∈ R, A > 0 and y ∈ C([p(t0,−1), t0 + A),Rn). For
any t ∈ [t0, t0 + A), we define

yt(ϑ) := y(p(t, ϑ)), −1 ≤ ϑ ≤ 0

and write
yt ∈ C := C[[−1, 0],Rn].
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1.1 System with unbounded delay with finite memory

In this paper we investigate existence of positive solutions of the system

ẏ(t) = f(t, yt) (1)

where f ∈ C([t0, t0 + A)× C,Rn), A > 0, and yt is defined in accordance with Defi-
nition 1. This system is called the system of p -type retarded functional differential
equations (p -RFDE’s) or a system with unbounded delay with finite memory.

Definition 2 The function

y ∈ C([p(t0,−1), t0 + A),Rn) ∩ C1([t0, t0 + A),Rn)

satisfying (1) on [t0, t0 + A) is called a solution of (1) on [ p(t0,−1), t0 + A).

Suppose that Ω is an open subset of R×C and the function f : Ω → Rn is continuous.
If (t0, φ) ∈ Ω, then there exists a solution y = y(t0, φ) of the system p -RFDE’s (1)
through (t0, φ) (see [13, p. 25]). Moreover this solution is unique if f(t, φ) is locally
Lipschitzian with respect to second argument φ ([13, p. 30]) and is continuable in
the usual sense of extended existence if f is quasibounded ([13, p. 41]). Suppose that
the solution y = y(t0, φ) of p -RFDE’s (1) through (t0, φ) ∈ Ω, defined on [t0, A], is
unique. Then the property of the continuous dependence holds too (see [13, p. 33]),
i.e. for every ε > 0, there exists a δ(ε) > 0 such that (s, ψ) ∈ Ω, |s − t0| < δ and
‖ψ − φ‖ < δ imply

‖yt(s, ψ)− yt(t0, φ)‖ < ε, for all t ∈ [ζ,A]

where y(s, ψ) is the solution of the system p - RFDE’s (1) through (s, ψ), ζ =
max{s, t0} and ‖ · ‖ is the supremum norm in Rn. Note that these results can be
adapted easily for the case (which will be used in the sequel) when Ω has the form
Ω = [ p∗,∞)× C where p∗ ∈ R.

1.2 Problem of existence of positive solutions

In this paper we are concerned with the problem of existence of positive solutions (i.e.
problem of existence of solutions having all its coordinates positive on considered
intervals) for nonlinear systems of RFDE’s with unbounded delay but with finite
memory. Let us cite some known results for retarded functional differential equa-
tions. Results in this direction are formulated in the book [12] and in the paper [1],
too. Positive solutions in the critical case were studied e.g. in [4]–[10]. Some known
scalar results concerning existence of positive solutions were extended for nonlinear
systems of RFDE’s with bounded retardation in [3] and for nonlinear systems of
RFDE’s with unbounded delay and with finite memory in [6].
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2 Auxiliary lemma

With Rn
≥0 (Rn

>0) we denote the set of all component-wise nonnegative (positive )
vectors v in Rn, i. e., v = (v1, . . . , vn) ∈ Rn

≥0 (Rn
>0) if and only if vi ≥ 0 (vi > 0) for

i = 1, . . . , n. For u, v ∈ Rn we write u ≤ v if v− u ∈ Rn
≥0; u ¿ v if v− u ∈ Rn

>0 and
u < v if u ≤ v and u 6= v.

Let p∗, t∗ be constants satisfying p∗ = p(t∗,−1) for a given p -function. Define
vectors

ρ, δ ∈ C([ p∗,∞),Rn)∩C1([t∗,∞),Rn)

satisfying ρ ¿ δ on [ p∗,∞). Let us put Ω := [t∗,∞)× C and

ω := {(t, y) : t ≥ p∗, ρ(t) ¿ y ¿ δ(t)}.

Definition 3 A system of initial functions SE,ω with respect to nonempty sets E
and ω where E ⊂ ω is defined as a continuous mapping ν : E → C such that a) and
b) in the following text hold:

a) For each z = (t, y) ∈ E ∩ int ω and ϑ ∈ [−1, 0] : (t + ϑ, ν(z)(p(t, ϑ))) ∈ ω.

b) For each z = (t, y) ∈ E ∩ ∂ω and ϑ ∈ [−1, 0) : (t + ϑ, ν(z)(p(t, ϑ))) ∈ ω and,
moreover, (t, ν(z)(p(t, 0))) = z.

We define as S1
E,ω a system of initial functions SE,ω if all functions ν(z), z = (t, y) ∈ E

are continuously differentiable on [−1, 0).

The next lemma deals with sufficient conditions for existence of solutions of the
system (1), the graphs of which remain in the set ω. The proof of this lemma is
based on the retract method and the Lyapunoff method and can be found in [6,
Theorem 1]. Since this result will be used in the following, we modify slightly its
original formulation underlying the necessary (for our purposes) fact that every set
of initial functions contains at least one initial function generating solution with
desired properties. This claim is a consequence of the proof of cited result.

Lemma 1 Suppose f ∈ C(Ω,Rn) is locally Lipschitzian with respect to the second
argument, quasibounded and moreover:

(i ) For any i = 1, . . . , p (with p ∈ {0, 1, . . . , n}), t ≥ t∗ and π ∈ C([p(t,−1), t],Rn)
such that (θ, π(θ)) ∈ ω for all θ ∈ [p(t,−1), t), (t, π(t)) ∈ ∂ω it follows (t, πt) ∈
Ω,

δ′i(t) < fi(t, πt) when πi(t) = δi(t) (2)

and

ρ′i(t) > fi(t, πt) when πi(t) = ρi(t). (3)
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(ii ) For any i = p+1, . . . , n, t ≥ t∗ and π ∈ C([p(t,−1), t],Rn) such that (θ, π(θ)) ∈
ω for all θ ∈ [p(t,−1), t), (t, π(t)) ∈ ∂ω it follows (t, πt) ∈ Ω,

δ′i(t) > fi(t, πt) when πi(t) = δi(t) (4)

and

ρ′i(t) < fi(t, πt) when πi(t) = ρi(t). (5)

Then at every set of initial functions SE,ω with

E := {(t, y) : t = t∗, ρ(t) ≤ y ≤ δ(t)}
there exist at least one ν = ν∗ ∈ SE,ω defined by a z∗ = (t∗, y∗) ∈ E ∩ intω such that
for corresponding solution y(t∗, ν∗(z∗)) we have

(t, y(t∗, ν∗(z∗))(t)) ∈ ω (6)

for every t ≥ p∗.

3 Existence of Positive Solutions

Let
k := (k1, . . . , kn) À 0

be a constant vector and

λ(t) := (λ1(t), . . . , λn(t))

denote a vector, defined and locally integrable on [ p∗,∞). Define an auxiliary
operator

T (k, λ)(t) := ke

∫ t

p∗
λ(s)ds

=

k1e

∫ t

p∗
λ1(s)ds

, k2e

∫ t

p∗
λ2(s)ds

, . . . , kne

∫ t

p∗
λn(s)ds


 . (7)

Let a constant vector k À 0 and a vector λ(t) defined and locally integrable
on [ p∗,∞) are given. Then the operator T is well defined by (7). Define for every
i ∈ {1, 2, . . . , n} two type of subsets of the set C:
T i :=





φ ∈ C : 0 ¿ φ(ϑ) ¿ T (k, λ)t(ϑ), ϑ ∈ [−1, 0] except for φi(0) = kie

∫ t

p∗
λi(s)ds




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and

T i := {φ ∈ C : 0 ¿ φ(ϑ) ¿ T (k, λ)t(ϑ), ϑ ∈ [−1, 0] except for φi(0) = 0} .

Theorem 1 Suppose f ∈ C(Ω,Rn) is locally Lipschitzian with respect to the second
argument and quasibounded. Let a constant vector k À 0 and a vector λ(t) defined
and locally integrable on [ p∗,∞) are given. If, moreover, inequalities

µiλi(t) >
µi

ki
e
−

∫ t

p∗
λi(s)ds

· fi (t, φ) (8)

hold for every i ∈ {1, 2, . . . , n}, (t, φ) ∈ [t∗,∞)× T i and inequalities

µifi(t, φ) > 0 (9)

hold for every i ∈ {1, 2, . . . , n}, (t, φ) ∈ [t∗,∞)× T i, where µi = −1 for i = 1, . . . , p
and µi = 1 for i = p + 1, . . . , n, then there exists a positive solution y = y(t) on
[ p∗,∞) of the system p -RFDE’s (1).

Proof. We will employ Lemma 1. Put ρ(t) := 0, δ(t) := T (k, λ)(t). Let us suppose
i ∈ {1, . . . , p}. It is easy to conclude that inequality (2) is equivalent to

δ′i(t) < fi(t, φ) when φ ∈ T i (10)

if the function π is changed by the function φ ∈ T i and inequality (3) is equivalent
to

ρ′i(t) > fi(t, φ) when φ ∈ T i (11)

if the function π is changed by the function φ ∈ T i. Similarly, for i ∈ {p + 1, . . . , n}
we conclude that inequality (5) is equivalent to

δ′i(t) > fi(t, φ) when φ ∈ T i (12)

if the function π is changed by the function φ ∈ T i and inequality (4) is equivalent
to

ρ′i(t) < fi(t, φ) when φ ∈ T i (13)

if the function π is changed by the function φ ∈ T i. Let us verify that above
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inequalities are valid. For t ≥ t∗ and i ∈ {1, . . . , p} (i.e. µi = −1) we get:

fi(t, φ)− δ′i(t) = µi(δ′i(t)− fi(t, φ)) = µi


kiλi(t)e

∫ t

p∗
λi(s)ds

− fi(t, φ)


 =

kie

∫ t

p∗
λi(s)ds


µiλi(t)− µi

ki
e
−

∫ t

p∗
λi(s)ds

fi(t, φ)


 >

[in view of (8)] > kie

∫ t

p∗
λi(s)ds

(µiλi(t)− µiλi(t)) = 0.

Similarly, for t ≥ t∗ and i ∈ {p + 1, . . . , n} (i.e. µi = 1) we get:

δ′i(t)− fi(t, φ) = µi(δ′i(t)− fi(t, φ)) = µi

(
kiλi(t)e

∫ t

p∗ λi(s)ds − fi(t, φ)
)

=

kie

∫ t

p∗
λi(s)ds


µiλi(t)− µi

ki
e
−

∫ t

p∗
λi(s)ds

fi(t, φ)


 >

[in view of (8)] > kie

∫ t

p∗
λi(s)ds

(µiλi(t)− µiλi(t)) = 0.

Therefore inequalities (10), (12) hold. Inequalities (11), (13) are valid, too since,
due to (9)

ρ′i(t)− fi(t, φ) = µifi(t, φ) > 0, if i = 1, 2, . . . , p (i.e. µi = −1)

and

fi(t, φ)− ρ′i(t) = µifi(t, φ) > 0 if i = p + 1, p + 2, . . . , n (i.e. µi = 1).

All conditions of Lemma 1 are satisfied. From its conclusion we immediately get
the desired statement. Theorem 1 is proved. 2

Remark 1 Let us underline that if Theorem 1 hold, then indicated positive solution
y = y(t) satisfies on [p∗,∞] inequalities

0 ¿ y(t) ¿ δ(t)

with corresponding given δ.
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3.1 A nonlinear example

The following example demonstrates that results can be successfully applied to non-
linear systems. Let us show that the system

y′1(t) = −1
2

[
y4
1(t

1/2) + y2
1(t) · y2(t)

]
,

y′2(t) = y2(t)− y1(t) · y2(t1/2) · y3(t),

y′3(t) = y2
1(t

1/2) · y2
3(t

1/2)

(14)

has a positive solution on interval [2,∞). Define

p(t, ϑ) := t + (t−
√

t)ϑ, ϑ ∈ [−1, 0].

Then the system (14) can be rewritten as

y′1(t) = f1(t, yt) := −1
2

[
y4
1(p(t,−1)) + y2

1(p(t, 0)) · y2(p(t, 0))
]
,

y′2(t) = f2(t, yt) := y2(p(t, 0))− y1(p(t, 0) · y2(p(t,−1)) · y3(p(t, 0)),

y′3(t) = f3(t, yt) := y2
1(p(t,−1)) · y2

3(p(t,−1)).

Let us verify that Theorem 1 can be used. For it we put:

p∗ = 2 = p(t∗,−1),
t∗ = 4,

k = (k1, k2, k3) = (1/4, 1, 1/2),
λ = (λ1, λ2, λ3) = (−1/t, 0, 1/t),
µ1 = µ2 = −1
µ3 = 1.

Then

T (k, λ)(t)) := ke

∫ t

2
λ(s)ds

=




1
4
· e
−

∫ t

2
ds/s

, 1,
1
2
· e

∫ t

2
ds/s


 =

(
1
2t

, 1,
t

4

)
.

Let us verify inequalities (8) and (9). If i = 1 and φ ∈ T 1 then

µ1

k1
e
−

∫ t

p∗
λ1(s)ds

· f1 (t, φ) =

− 2t · f1 (t, φ) < t ·
[(

1
2
√

t

)4

+
(

1
2t

)2
]

=
3
8t

<
1
t

= µ1λ1(t) ,
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if i = 2 and φ ∈ T 2 then

µ2

k2
e
−

∫ t

p∗
λ2(s)ds

· f2 (t, φ) = −2
t
· f2 (t, φ) =

− 2
t
·
[
1− φ2(−1) · 1

2t
· t

4

]
<

2
t
·
[
−1 +

1
8

]
= − 7

4t
< 0 = µ2λ2(t)

and if i = 3 and φ ∈ T 3 then

µ3

k3
e
−

∫ t

p∗
λ3(s)ds

· f3 (t, φ) =

4
t
· f3 (t, φ) <

4
t
·
(

1
2
√

t

)2

·
(√

t

4

)2

=
1

16t
<

1
t

= µ3λ3(t)

and inequalities (8) on interval [4,∞) hold.
Inequalities (9) hold on interval [4,∞) since if i = 1 and φ ∈ T1 then

µ1

k1
· f1 (t, φ) = −4f1 (t, φ) = 2

[
φ4

1(−1) + φ2
1(0) · φ2(0)

]
> 0,

if i = 2 and φ ∈ T2 then

µ2

k2
· f2 (t, φ) = −f2 (t, φ) =

− [φ2(0)− φ1(0) · φ2(−1) · φ3(0)] = φ1(0) · φ2(−1) · φ3(0) > 0

and if i = 3 and φ ∈ T3 then

µ3

k3
· f3 (t, φ) =

1
2
f3 (t, φ) =

1
2

[
φ2

1(−1) · φ2
3(−1)

]
> 0.

All conditions of Theorem 1 are valid. Therefore a positive solution

y = y(t) = (y1(t), y2(t), y3(t)),

of the system (14) exists on [2,∞). Taking into account Remark 1 we conclude that
on the interval considered inequalities

0 < y1(t) < 1/2t ,

0 < y2(t) < 1,

0 < y3(t) < t/4

hold.
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[4] J. Dibĺık, Positive and oscillating solutions of differential equations with delay in critical
case, J. Comput. and Appl. Mathem. 88 (1998), 185-202.
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