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Abstract

In this contribution we summarize and extend well-known examples of orthogonal trajec-
tories in elementary mathematics. Orthogonality is required and useful property in many
technical applications.
Consider the system of curves F (x, y, c) = 0 in the plane, where c ∈ R, and let

Φ(x, y, y′) = 0 be their differential equation. Hence Φ(x, y,− 1
y′ ) = 0 is the differential

equation of their orthogonal trajectories G(x, y, k) = 0, where k ∈ R.
Consider two orthogonal systems of curves in the plane � = f1(ϕ, c), � = f2(ϕ, c) in

polar coordinates, where c ∈ R. The condition of orthogonality of these systems is
df1

dϕ
.
df2

dϕ
= −�2.

Consider the autonomous system of differential equations in the plane

dx

dt
= f (x(t), y(t)) ,

dy

dt
= g (x(t), y(t)) , (1)

where f a g are continuous functions in a domain Ω ⊆ R2. The solution of the system (1)
is x = x(t), y = y(t). The graph of solution of the system (1) is a curve in Ω ×R. The
perpendicular projection of the graph of solution to the domain Ω is a curve given in the
parametrical form x = ϕ(t), y = ψ(t), where t ∈ J ⊆ R, called a trajectory of the
system (1).
Solving the system x′ = f(x, y), y′ = g(x, y) is the same as solving differential equa-

tions dy
dx

= g(x,y)
f(x,y)

in the domain G1 = {(x, y) ∈ Ω : f(x, y) �= 0} and dx
dy

= f(x,y)
g(x,y)

in the
domain G2 = {(x, y) ∈ Ω : g(x, y) �= 0}. It can be expressed in a symmetrical form
f(x, y)dy − g(x, y)dx = 0.
Using the complex value z = x+iy we can write the autonomous system x′ = f(x, y),

y′ = g(x, y) like
z′ = F (z), (2)

where ′ = d
dt
and F (z) = f(x, y) + ig(x, y) is a complex function.

Consider two autonomous systems x′ = f(x, y), y′ = g(x, y), and x′ = −g(x, y),
y′ = f(x, y). The trajectories of both autonomous systems create an orthogonal grid in
Ω ⊆ R2.
If we multiply the function F = f +ig by the imaginary unit i , we obtain the function

iF = −g + if .
The theory of stationary points of linear autonomous systems is well-known.
Denote f1 = ∂f(x0,y0)

∂x
, f2 = ∂f(x0,y0)

∂y
, g1 = ∂g(x0,y0)

∂x
, g2 = ∂g(x0,y0)

∂y
. Suppose that f(x, y),

g(x, y) are continuous functions having continuous partial derivatives of second order in



the neighbourhood of the point [x0, y0], f1g2 − f2g1 �= 0, and f(x0, y0) = g(x0, y0) = 0.
Then the point [x0, y0] is an isolated stationary point of the system x′ = f(x, y),
y′ = g(x, y). Likewise if the point [0, 0] is an isolated stationary point of the linear
autonomous system x′ = f1x+ f2y, y′ = g1x+ g2y, and his type is node, focus or saddle
point, the type of stationary point [x0, y0] of the system x′ = f(x, y), y′ = g(x, y) is
the same. If the point [0, 0] is isolated stationary point of the linear autonomous system
x′ = f1x+ f2y, y′ = g1x+ g2y, and his type is center, the type of stationary point [x0, y0]
of the system x′ = f(x, y), y′ = g(x, y) is rotation point or focus.

Now we investigate several special functions F (z) in the equation z′ = F (z):

If F = f(x) + ig(y), then we obtain the autonomous system x′ = f(x), y′ = g(y).
We can solve it as two differential equations dx

f(x)
= dt, dy

g(y)
= dt, where f �= 0, g �= 0,

respectively. We can replace this autonomous system by a differential equation dx
dy

= f(x)
g(y)

for f �= 0, or dy
dx

= g(y)
f(x)
for g �= 0. Hence we have an equation y′

g(y)
= 1

f(x)
, where f �= 0,

g �= 0.

If F = f(y)+ ig(x), we obtain the autonomous system x′ = f(y), y′ = g(x). We solve
it like an equation dx

dy
= f(y)

g(x)
for g �= 0, or dy

dx
= g(x)

f(y)
for f �= 0. Hence we have equation

f(y)y′ = g(x) or g(x)x′ = f(y).

If F = f(x) + ig(x), then we obtain the autonomous system x′ = f(x), y′ = g(x).
We solve it like an equation dx

dy
= f(x)

g(x)
for g �= 0, or dy

dx
= g(x)

f(x)
for f �= 0, which leads to

equation x′ = h(x), where h = f/g, or y′ = k(x), where k = g/f .

If F = f(y) + ig(y), then we obtain the autonomous system x′ = f(y), y′ = g(y). We
have dx

dy
= f(y)

g(y)
for g �= 0, or dy

dx
= g(y)

f(y)
for f �= 0, which leads to equation x′ = h(y), where

h = f/g, or y′ = k(y), where k = g/f .

If F = af(x, y) + ibf(x, y), where a, b ∈ R, then we obtain the autonomous system
x′ = af(x, y), y′ = bf(x, y). We obtain dx

dy
= a

b
for b �= 0, or dy

dx
= b

a
for a �= 0. This is an

equation bx′ = a, ay′ = b, respectively, and its solution is ay − bx = c, where c ∈ R.
Especially, for a = 0 we obtain x′ = 0, hence x(t) = const., y′ = bf(y, c), where c ∈ R,

which gives an equation dy
bf(y,c)

= dt, whose solutions are parallel to yt-plane in Ω ×R.
Similarly for b = 0 we obtain y′ = 0, hence y(t) = const., x′ = af(x, c), where c ∈ R,

which gives an equation dx
af(x,c)

= dt, whose solutions are parallel to xt-plane in Ω ×R.

The aim of this contribution is to construct the collection of examples of differential
equations of orthogonal trajectories depending on parameters. In the following examples
we investigate orthogonal trajectories of systems of curves like solutions of convenient
differential equations. In many cases this method is very useful. We will formulate several
geometrical problems, we will solve them using analytical methods and their solutions will
be interpreted geometrically.
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