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1.  Mathematical modeling  
 
  The paper analyses the methods of numerical solution of various tasks defined in terms of 
boundary-initial value problems of differential or integral equations.  In natural sciences and 
engineering, a mathematical model is generally defined by differential equations which can be solved 
using  mostly:  

- finite-difference method (FDM), 
- finite-element method (FEM), 
- boundary-element method (BEM). 
 

     The choice of calculation method is affected by many factors. First of all, it is determined by 
the possibility of an accurate definition of the problem and regard to the boundary-initial conditions. It 
also depends on the system of algebraic equations and parameters of computer hardware used for 
carrying out the task.  
 
     The FDM is the oldest, simplest, and most popular method, based on substituting finite 
differences for derivatives. It was formulated as an approximate discrete method for solving boundary-
value problems defined in terms of differential equations. Furthermore, its application was extended to 
variational problems. It may also be applied to boundary-initial value problems related to differential 
equations of parabolic type, describing a temperature distribution in the theory of heat conduction [7]. 
Nevertheless, for the domains of complex geometry, it becomes too much complicated due, first of all, 
to boundary conditions. These difficulties may be avoided if the calculation is made by FEM. 
  
     The last method is applied mostly to elliptic equations. However, when difference 
discretization with respect to time is introduced, it may also be used for parabolic equations. An 
equation is discretized by dividing the examined field into separate triangles. i.e. by triangularizing it. 
Afterwards, the base functions are formulated. FEM requires an explicit definition of the field subject 
to analysis. Therefore, it is usually applied to internal problems. It might  also be used for external 
problems but leads to huge systems of equations, as the elements must cover the whole field of 
analysis. 
 
     Recently a BEM approach has very often been used for mechanical problems. It helps to 
reduce the number of equations considerably. It appears to be very advantageous, the solving of a 
large number of equations requires an immense memory size and is rather time consuming. The 
success of the method is based on omitting the discretization of the field. Only its border is subject to 
discretization, causing a reduction of the size and cutting down the computation time. The FEM and 
BEM approaches might be considered as complementary as their faults and advantages compensate 
each other. Extensive work aimed to connect both methods lead to hybrid techniques combining 
advantages of both and eliminating their faults . 
 
     Unfortunately, the above-mentioned methods are of little avail in determining the voltage 
gradient distribution in electro-insulation systems. The integral equation method (IEM) seems to be 
the most appropriate for this purpose, as electric potential distribution is described with the help of 
integral equations [2]. Such formulation of the problem, including boundary conditions (potentials for 
the conductors or their total charges) leads to a system of integral equations the numerical solution of 
which makes it possible to determine the charge density distribution of conducting parts and potential 
distribution in the surrounding space . In general, IEM is directly conducive to a mathematical model 
described by various classes of integral equations or, indirectly, to a boundary-initial problem of some 
differential equations. The method is applied to the theory of heat conduction [7] and to the theory of 



diffusion. It is also used in electromagnetism, for example in determining selected electrodynamical 
parameters in three-phase systems of shielded heavy-current busways . The choice of the method in 
such a case is justified, as the distribution of current density in phase conductors is obtained by solving 
a system of integral equations. The current density distribution of a single live conductor described in 
[6, 8] was found with the use of geometry of the system. The kernel of the equation was formulated 
with the account of skin effect of phase conductors, their approaching, and inducing of eddie currents 
in the shield. By such an approach, solutions were obtained that could be used to analyze 
electromagnetic phenomena occurring in current busways and the neighboring space, confining the 
considerations to a particular part of the field under investigation, i.e. to the surface area of one of the 
live conductors. Attempts at integrating electromagnetic field equations have a long history which is 
documented by a large number of publications [2, 6, 8]. The integral representation of field equations 
serves as a basis for many analyses utilizing numerical methods, particularly in unrestrained regions.  
 
 The aim of this paper is to present the advantages of the method of integral equations (IEM) 
and the possibilities of its application to various branches of engineering, particularly to the problems 
arising in power engineering [2]. It is an analytical-numerical method and requires great efforts from 
highly skilled specialists (mathematicians, computer scientists, engineers). IEM seems to be a natural 
method, especially in the field of electrodynamics. This is a case of electromagnetic field being 
described with integral equations, the kernels of which are searched for by integral transformations in 
the domain of space variables, while in the time domain the expected system response has a form of 
integral formulas. Moreover, an integral description of electromagnetic field in an environment 
inhomogeneous with regard to electric and magnetic features is presented in [8]. It confines the 
expected solution valid for the whole domain to a predefined part of the space subject to analysis. This 
enables a considerable reduction of the size of the system of equations. The method is worth of being 
applied as for the case of complex geometry of the problem, which is frequently met. In such a case, 
the minimization of the size of the systems of equations and the reduction of computation time, while 
maintaining the accuracy, becomes highly important. 
 
  Integral equations, or rather their systems, are often matched with mathematical models 
describing the current density distribution at the cross-section of a working conductor [6,8] or in the 
cartridge of an induction heater. The knowledge of the current density distribution may be a basis for 
determining some electrodynamic values such as magnetic induction or distribution of electrodynamic 
forces acting at selected points of the conductors. 
 
     Similarly, Maxwell's equations describing the relationship between the vectors of 
electromagnetic fields provide a  system of  partial differential equations that may be converted into 
integral equations.  
 
            Next considerations we restrict to the following integral equations of the mixed type 
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which generalize Volterra and Fredholm integral equations. The presented equations play a very 
important role in epidemiology, mechanics, electromagnetics and engineering. These equations arise 
in the heat conduction theory and the mathematical modelling of the spatio-temporal development of 
an epidemic. The spread of the disease in a given population can be described by the following mixed 
integral equations. Some initial-boundary problems for a number differential partial equations in 
physics are reducible to the above integral equation. Consider this equation in space-time, where g  is 
a given function in the domain D M T= × [ , ]0  (M is a compact subset of m-dimensional Euclidean 
space) and u is an unknown function in D. The kernel k is defined in the domain 
Ω = ∈ ≤ ≤ ≤{( , , , ): , , }x t y s x y M s t T0 .   

 The theory and computational methods were presented in [1]. In the next section, we will 
present a test-example for projection methods presented in [1]. 



 

2. Numerical experiments 
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„GalClas_G” 

 

 
„Gal_Four” 

 
absolute error for  n=2, m=2, k=3, 
total number of operations: 6180  

absolute error for  n=3, m=16, 
total number of  operations: 5526 

  
absolute error for  n=3, m=3, k=3, 

total number of  operations: 58320 
absolute error for  n=3, m=61, 

total number of  operations: 58041  

  
absolute error for  n=5, m=8, k=3, 

total number of  operations: 2521750 
absolute error for  n=7, m=190, 

total number of  operations: 2819285 

  
 
 

Graphs of absolute errors for „GalClas_G” and „Gal_Four” algorithms. 
 
3. Conclusions 
 
    The aim of this paper is to show the advantage of the method of integral equations in electrical 
engineering.  
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